Ocean pH and the carbon cycle
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Electroneutrality principle and pH

All water solutions are electrically neutral: the total abundance
of cation charges (+) is exactly matched by the total
abundance of anion charges (-)

Pure water pH
» a tiny fraction of H,O dissociates into hydrogen (H*) and

hydroxide (OH")

* since these are the only ions in pure water, their abundances
must be equal, i.e., [H*] = [OH] = 10" mol/kg

* pH = -log [H*], = 7 for pure water (neutral)

« experiment: add a strong acid (HCI) to pure water:
* HCI dissociates into H* and CI-
* new charge balance is: [H*] = [CI] + [OH"]
* [H*] rises (acidic pH, <7)




Seawater alkalinity

* most elements dissolved in seawater have “conservative
charge,” meaning that the charge of their ions does not
change (e.g., Na* and CI)

e seawater contains an excess of conservative cations+ over
conservative anions-

» this excess charge is called the alkalinity:

Alk = X(conserv. Cation+ charges) - X(conserv. anion-
charges)

ie: ([Na*] + 2[Mg2*] + 2[Ca?*] + [K+]...) - ([CI] + 2[SO,2]...) >
0




Seawater pH

« H* and OH- could theoretically balance alkalinity by
having more OH- than H* ("non-conservative charge”)

* if no other ions could change their charge, [OH-] would
have to be very high and seawater would be very basic

* in reality, molecules of two other important elements can
change their charge to provide more anions to balance
the alkalinity: carbon and boron (“non-conservative
charge”)

« seawater pH is only slightly basic (~7.8-8.3)
because OH- only needs to provide a small fraction of the
anions (C and B provide most of the charge balance)

» seawater pH is also not easily changed, for the same
reason (buffered)




Carbon in seawater

» basic building block of organic molecules
* ~60X more C dissolved in oceans than in atmosphere
* occurs in seawater in several forms:
» ~98% dissolved inorganic carbon (DIC):
» ~1% carbon dioxide gas (CO,)
* ~90% bicarbonate (HCO;)

« ~10% carbonate (CO;%)
* DIC transforms between 3 to maintain charge balance
» ~2% dissolved organic carbon (DOC)
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Calcium Carbonate Accumulation

CaC03 accumulates aboye CCD
CacOzdissolvyes
. D

B elow the CCD, cold water holds more COz, which results inmore
carbonic acid, which dissolyes CaCOz faster.

Solubility of aragonite and calcite [expressed in
terms of carbonate (CO32—) ion Concentration] in Diagram showing the sediment “snow line” in the oceans. The dashed line
shows the calcium carbonate compensation depth (CCD). At this depth,

seawater at 2°C as a function of water depths [gW 1]z the rate at which calcareous sediments accumulate equals the rate at which
; . . those sediments dissolve. The CCD varies with temperature: the “snow

North Atlantic and the eastern Equat0r|a| Pacific. line” is lower in warmer waters and higher in colder waters.

The intersections of the solubility curves with the

curves for the concentration of the CO32 ion

indicate the water depths at which the ocean water is

saturated with the respective minerals.




DIC distribution

* low at the sea surface and high in the deep ocean
* removed by photosynthesis and added by respiration (as CO,)
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Air-sea exchange of CO,
Of the three forms of DIC, only CO, can enter the atmosphere

At equilibrium, the partitioning of CO, between the atmosphere
and ocean is determined by Henry's Law:

pCO, =[CO(aq)] / K,

pPCO, is the concentration (“partial pressure”) in air

[CO,(aq)] is the concentration in seawater
 decreases with photosynthesis

K, Is the solubility coefficient
- decreases with T temperature (warm — higher pCO,)
« decreases with T salinity (salty — higher pCO,)




Climatological pCO, in Surface Water [940K] for February 1995
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Annual average fluxes: more in than due to buildup of fossil

fuel CO, in the atmosphere

Mean Annual Air-Sea Flux for 1995 (I\'CEP 41-Yr Wind, 940K, W-92)
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* reservoirs quantified in gigatonnes (Gt = 10'° g) of C atoms
* fluxes quantified in Gt C per yr




“Perturbed” carbon cycle (1990s, IPCC4)
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Ocean acidification
* CO, generates an acid in seawater (pH drop):

* CO, + H,0 - H,CO; - HCO, + H*

« surface ocean pH has already dropped by ~0.1

* pH expected to drop by additional 0.2-0.3 by 2100
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Cartoon on calcification process:
http://www.whoi.edu/home/oceanus
imaqges/ries/calcification.html

CO2 progression:

http://www.esrl.noaa.gov/gmd/ccqgg
/trends/history.html




CaCQO, dissolution
» dissolves under high pressure, low temperature, acidic water
« some of the H* combines with CO,?- (buffering):

« CO;% + H* 5> HCO4

- saturation state of CaCO, depends on [Ca?*]*[CO,%]

« seawater is then less saturated as pH drops

 aragonite is more soluble than calcite
 organisms with aragonite shells (pteropods, corals) may have difficulty
calcifying by 2100 (average surface pH 7.75-7.95)




The abundances of the DIC ion forms
change with pH; at ocean pH’s bicarbonate
(HCO;") is dominant.
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