Large Image

For high-speed internet connections
Please widen your browser window so this sentence isn't obscured.

Instructions

TundraCam is a live "steerable" Colorado mountain webcam.

Start it up: To take control of the TundraCam, click the "Start Control" button to the right which will cause the small rectangular timer box directly above the button to turn from white to green. You may have to wait up to a minute if someone else is currently using the cam.

Beginners: We recommend that beginners first choose from the "preset views" menu, which will appear to the left of the Start button immeadiately after you gain control.

Video Tutorial: For more instructions on steering the cam see a 3 min screencast video (Flash format or QuickTime format)

Night viewing is limited: The cam image is black at night with the exception of the city lights of Denver, the moon, and an inadvertent small cone-like yellow light. The latter is caused by an LED power light on the camera reflecting onto the inside of the glass dome which encloses TundraCam.

TundraCam overview: How does TundraCam work? What is TundraCam used for? Vist the home page to find out.

Java required: this site is sensitive to the Java version on your computer. If your browser quits without warning or the webcam image fails to load, update your browser (ie Internet Explorer) as well as Java. For Java, PC folks can visit Java Tester and follow its instructions. Mac folks can use "Software Update" (via Apple Menu) to check whether they need a newer version.

Current Weather
Air Temperature 11°C 51.9°F
Soil Temperature 10.3°C 50.6°F
Relative Humidity 56.9 %  
Barometric Pressure 671.4 mbar  
Wind Speed 8.2 m/s 18 mph
Wind Direction 281.5°  
Peak Wind Gust 12.4 m/s 28 mph
Time of Peak Gust 1913 MST  

2000 to 2100 Mountain Time on Thursday 24 July 2014
One-hour average values rounded to one decimal place.
All data are raw and have not been quality checked.

Sponsors

TundraCam is sponsored by several research units at the University of Colorado at Boulder:

INSTAAR - An Earth and Environmental Systems Institute
INSTAAR develops scientific knowledge of natural and anthropogenic physical and biogeochemical environmental processes at local, regional and global scales, and applies this knowledge to improve society's awareness and understanding of environmental change.
Niwot Ridge LTER
Niwot Ridge was established as a site in the National Science Foundation sponsored Long-Term Ecological Research Program in 1980. The entire site lies above 3000 m elevation and research topics include the patterns and controls of nutrient cycling; trace gas dynamics, plant primary productivity and species composition; geomorphology, and paleoecology.
INSTAAR Mountain Research Station
An interdisciplinary research facility devoted to mountain ecosystems. Its mission is to facilitate research and education to better understand the unique patterns and processes of biological and physical systems in mountains, and how environmental changes may affect these processes.
INSTAAR Glaciology Group
This group studies ice-flow dynamics and calving, sub-glacial and englacial hydrology, sea level change as controlled by the earth's small glaciers, climate change and glacier mass balance, heat exchange within snow pack.

TundraCam website and TundraCam maintenance:

The current website was designed and built by David Lubinski, Shelly Sommer, Todd Ackerman, and Bill Manley (all at INSTAAR) based on previous work by Todd Ackerman (INSTAAR), Joel Harper (Univ. of Montana), Tad Pfeffer (INSTAAR), and others.

TundraCam has been maintained by a number of individuals in recent years including Todd Ackerman, Kurt Chowanski, Mark Losleben, Tad Pfeffer, and others.

More Info:

 

What does TundraCam see?

Closeup of TundraCam rotating

TundraCam rotates in a clear dome and can be used for real-time monitoring of the environment such as cloud cover, snow drifting, snow-melt patterns, and vegetation changes.

You can also see some of the equipment and facilities used by scientists studying the high-altitude environment as well as prominent landscape features like the top of Long's Peak at 4345 m (14,255 ft).

For examples of what the TundraCam can see on a clear day without low clouds or blowing snow:

(1) Click on a button in the below menu such as Boulder Watershed ↓.

(2) Check out the Gallery of images submitted to us to by TundraCam viewers. To capture a still image for yourself, just click on the small camera icon to the far left of the Start button. Windy conditions will make the images a little blurry due to camera shaking.

More Info:

Boulder Watershed

Boulder Watershed

Portions of the upper section of the Boulder watershed are visible in this TundraCam image. The westernmost and highest elevation section of the City of Boulder watershed spans from approximately Navajo Peak (to the right in this image) southward (left) to South Arapahoe Peak, which is visible via TundraCam. Arapaho Glacier, from which Boulder gets part of its water supply, lies out of view just below South Arapahoe Peak. Lake Albion, one of a staircase of lakes within the Green Lakes Basin, is also visible from the TundraCam.

Note: the public is not allowed to visit the upper section of the City of Boulder Watershed in order to protect water quality and to provide a rare relatively pristine environment for environmental research. Most other Front Range mountain areas are clearly impacted by recreational activity.

More Info:

Subnivean Lab

Subnivean lab

"Subnivean" means under the snow and this facility is used to study the timing and spatial variability of snow melt. An array of basins at the ground surface catch melt water from the bottom of the snowpack. The melt water is piped to an underground laboratory where instruments measure and record the amount of melt water flowing from each basin within the array. The measured snow melt is compared to meteorological data from the adjacent tower. Instruments on the tower can be moved up and down as the snowpack grows and shrinks so that the meterorological instruments maintain a constant height above the snow surface. The lab also houses instruments and equipment for investigating snow surface energy exchanges and biogeochemical processes within and below the snow.

More Info:

Snow Fence

Snow Fence

The 2.6m tall porous fence in the middle of this image traps wind-blown snow in an area where thick accumulations rarely occur naturally. By manipulating the snow cover, scientists can assess the effects of climate change on alpine ecology and biogeochemical cycles, especially those linked to nitrogen (N) and carbon (C) dynamics. The trapped snow typically lasts an extra few months beyond that of the surrounding area. The small circular fence in the foreground surrounds several meteorological instruments including a snow gauge.

More Info:

Tundra Lab

Tundra Lab

The Tundra Lab allows year-round research in a harsh region where winds can approach 72 m/s (160 mph) and the wind-chill factor can dip as low as -57°C (-70°F). Summer hail and lightning storms are also common. The lab is powered by solar energy and a buried AC power line.

More Info:

SDL Met Tower

Met Tower

This downward looking view from the 12 m (40 ft) tall meteorological tower shows an anenometer, a propellered instrument for measuring wind speed and direction. The tower supports the TundraCam and an array of meteorological instruments for measuring wind, air temperature, humidity, precipitation, solar radiation, barometric pressure, carbon dioxide, and surface ozone. Power is supplied by an AC line that extends to the Tundra lab. The connection to the internet is via a Cat 5 serial cable to the Tundra Lab, and then via a four-mile long buried fiber optic cable to the INSTAAR Mountain Research Station

More Info:

Other

There are many other interesting features to view with TundraCam including:

Lake Albion
This natural lake is one of a staircase of lakes within the Green Lakes Basin. The Green Lakes Basin is in the headwaters of North Boulder Creek.
Kiowa Peak
4047m (13,278'). This dramatic peak is well within the City of Boulder Watershed and, thus, no access is allowed.
Arikaree Peak and Glacier
4008m (13,150'). Located between Kiowa and Navajo, the summit of Arikaree lies just within the Boulder Watershed. Its north facing slope contains the small Arikaree Glacier.
Navajo Peak
4087m (13,409'). Navajo Peak straddles the continental divide. Arikaree Glacier is just visible to left of the peak
Mount Audubon
4030m (13,223'). This broad prominent mountain can be seen from many points in Boulder County.
Long's Peak
4345m (14,256'). Located in Rocky Mountain National Park, Long's Peak is the northernmost of Colorado's 54 peaks over 14,000 feet. The southern exposure of its uppermost section is visible with TundraCam and lies about 22 km (14 miles) to the north.
Lab Shelter
This small building is used for seasonal storage.
Boulder
Although the city of Boulder lies only 27 km (17 miles) from the TundraCam, it cannot be seen as the view is obstructed by foothills. Boulder is home to the University of Colorado and INSTAAR - an Earth Systems Institute.
Denver
The Denver metropolitan area has a population of more than 2 million. Its city lights are visible on clear nights with TundraCam. Downtown Denver is about 64 km (40 miles) away.
Trail
This trail runs about three miles to the INSTAAR Mountain Research Station. To reach the Tundra Lab, researchers must hike or ski the trail. One researcher has traveled this trail five days a week for ten years.
Silver Lake
The City of Boulder stores water in this dammed reservoir. The lake is fed by meltwater from Arapaho and Arikaree Glaciers. Boulder Creek flows out from Silver Lake.

 

TundraCam has moved

Visit our new Live Video page