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POWER OF TRACK SURVEYS 

Mountain lion track. Photo by U. Andrejko, Arizona Uame and FIsh Department 

Power of track surveys to detect changes 
in cougar populations 

Paul Beier and Stanley C. Cunningham 
Abstract Little is known about the ability, or statistical power, of track surveys to detect a change in abun- 

dance of cougars (Puma concolor). We examined monitoring schemes that would have 80% 
power to detect a 30% or 50% change in track abundance between 2 survey periods. We used 
data from track transects in southeastern Arizona to evaluate survey designs for 8-km transects 
in first- and second-order dry washes. Track density (number of 0.5-km segments with tracks 

along an 8-km transect) followed a Poisson distribution, with no serial correlation between con- 
secutive surveys of a given transect. We used simulated Poisson data to determine how power 
varied in response to number of 8-km transects, risk of Type I error, direction of change (in- 
crease or decrease), magnitude of change (30% or 50%), and whether track density between 
surveys changed uniformly or patchily across transects. Power decreased only slightly when 
change in track density was patchy. Track transects had low power to detect increases in track 

density (e.g., about 190 transects would be needed to detect a 30% increase with 80% power 
and a = 0.05), but somewhat more power to detect decreases (about 140 transects would de- 
tect a 30% decrease with 80% power at a = 0.05). Managers can increase the power of surveys 
(or decrease the number of transects) if a 10-20% risk of Type I error is acceptable, i.e., about 
140 transects would be needed to detect a 30% decrease in track density with 80% power at a 
= 0.05, 110 transects at a = 0.10, and 85 transects at a = 0.20. If surveys need to detect only 
large decreases (50%), track surveys are more powerful, with only about 50 transects needed for 
80% power at a = 0.05, and 30 transects at a = 0.20. Thus, track surveys usually will not de- 
tect small annual changes, but may reveal large changes more efficiently than other methods. 

Key words cougar, mountain lion, Poisson distribution, population monitoring, Puma concolor, sta- 
tistical power, track surveys 
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Because cougars (Puma concolor) are noctur- 
nal, secretive, and disperse at low densities, it is 
difficult to monitor changes in their populations. 
With intensive radiotelemetry, we can estimate 
the size of a population (Seidensticker et al. 1973, 
Van Dyke et al. 1986, Van Sickle and Lindzey 
1992, Beier 1993, Cunningham et al. 1995), but 
this approach is expensive, requires handling a 
large proportion of a population, and yields an es- 
timate for only a relatively small area. To index 
population trend over large areas at low cost, 
managers use hunter harvests, depredation rates, 
and track surveys. However, trend estimates from 
hunter kills and depredation rates are sensitive to 
hunting effort and reporting rates, respectively, 
and these parameters rarely are known. Further- 
more, these 2 types of data yield only point esti- 
mates with unknown risk of Type I error (a, the 
risk of concluding that a population change oc- 
curred when it did not), unknown risk of Type II 
error (/3, the risk of failing to detect a change that 
did occur), and unknown statistical power (1 - /3, 
probability of correctly detecting a population 
change). 

Track surveys may provide a better index than har- 
vest or depredation data. Van Dyke et al. (1986) and 
Van Sickle and Lindzey (1992) reported positive cor- 
relation between track density and cougar popula- 
tion size. Tracking effort can be standardized easily. 
Smallwood and Fitzhugh (1992, 1995) and Small- 
wood (1994) suggested field methods for track sur- 
veys and used track surveys to index population 
trend in California. Similarly, Cunningham et al. 
(1995) used tracks to index cougar abundance in 
southeast Arizona. 

We developed sampling methods that would al- 
low managers to detect a 30-50% change in 
cougar abundance between 2 survey periods. We 
assumed that track density in an area was linearly 
related to number of cougars regardless of density 
(i.e., that the number of tracks/cougar/unit time is 
the same at high and low density). We used data 
from track surveys in southeastern Arizona to eval- 
uate different survey designs. We analyzed how 
power varied with sample size, risk of Type I er- 
ror, direction and magnitude of change, and pat- 
tern of change in track density (i.e., uniform or 
patchy). 

Field survey methods and results 
Cunningham et al. (1995) surveyed 28 dry washes 

on foot in the 4035-km2 Aravaipa-Klondyke study 
area in southeastern Arizona during 4 sampling peri- 

Mountain lion. Photo by G. Andrejko, Arizona Game and Fish De- 
partment 

ods (Oct 1991, Apr 1992, Oct 1992, Apr 1993). 
Washes were chosen because tracks were identifi- 
able only in dust, sand, or mud, which occurred 
mostly on dirt roads and washes; vehicular traffic and 
wind rapidly obliterated tracks on roads. Smallwood 
and Fitzhugh (1995) reported that first- and second- 
order washes had higher track densities than tran- 
sects in other topographic settings. About half (13) of 
their transects were 8 km long; the others were 
4.5-7.5 km long (x = 6.8 km). Because 5 precipita- 
tion-free days were required before starting a survey, 
not all transects were walked in each sampling pe- 
riod (Table 1). 

On each transect, a single trained observer 
started at first light at the headwaters of the wash 
and walked downstream, completing the survey 
within about 4 hours. For each 0.5-km segment of 
a transect, the observer counted cougar scats and 
track sets (continuous set of tracks apparently 
made by 1 individual). The observer also estimated 
the number of different individuals detected in 
each segment and along the transect. In our analy- 
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sis, we reduced these observations to 1 type of 
presence-absence data, i.e., whether each segment 
contained cougar tracks (excluding any track set 
which unambiguously extended from the previous 
segment). We counted total number of segments 
with tracks/8-km transect (for transects >8 km 
long, we used the number of tracks expected on an 
8-km transect). We refer to this count as track den- 
sity. We did not analyze numbers of track sets, 
numbers of scats, or estimated numbers of individ- 
uals for 2 reasons. First, presence-absence data 
were less susceptible to variation due to observer 
skills. Second, the most likely cause of a high count 
on a segment was that a cougar had a kill nearby; 
this high count would not reflect a larger number 
of animals. 

The probability of track detection was not con- 
stant across each 0.5-km segment (Fig. 1). Tracks 
were rarely detected in the first kilometer of a 
transect because the uppermost portions of 
washes lacked a well-developed scour zone with 
suitable sandy substrates. In the lowermost por- 
tions of a transect, domestic cattle tracks tended 
to obliterate cougar tracks. Consequently, we 
could not model track density as a constant prob- 
ability of track occurrence on all segments, as 
Kendall et al. (1992) did for sign of grizzly bears 
(Ursus arctos borribilis) and black bears (U. 
americanus). 

On average, 7% of the 0.5-km segments contained 
cougar tracks (Table 1). Although there were more 
segments with tracks during the first survey period 
than during subsequent periods, only the difference 
between period 1 (12%) and period 2 (4%) was sta- 
tistically significant (Wilcoxon matched-pairs 
signed-rank test, P = 0.008; matched-pairs t-test, P = 
0.007). 

Track density followed a Poisson distribution in 
each sampling period (Table 1) and across 78 tran- 
sects in all sampling periods (Kolmogorov-Smirnov 
test, P = 0.09) and departed from a normal distribu- 
tion in each sampling period (Table 1) and across all 
sampling periods (Kolmogorov-Smirnov test, P < 
0.0001). 

To investigate serial correlation of track occur- 
rence on individual transects, we compared the 
proportion of each transect's segments that had 
tracks for each pair of consecutive surveys. These 
showed no correlation (r2 = 0.04, n = 51 pairs). 
Therefore, in our simulations we assigned each 
transect a track density from a Poisson distribution 
with an appropriate mean, regardless of the track 
density simulated for any previous survey on that 
transect. 
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Fig. 1. Probability of track detection versus distance along dry 
stream washes during 78 transects for cougar tracks on the Ara- 
vaipa-Klondyke study area, Arizona, 1992-1993. Each 8-km tran- 
sect was walked from high to low elevation. 

Methods used to analyze survey 
power 

Our field results indicated that track density fol- 
lowed a Poisson distribution and that track density on 
a transect was independent of previous counts on 
that transect. Therefore, we used a simple Poisson 
model to simulate observations of track density dur- 
ing 2 different years. We used our observed mean 
track density across all surveys (1.14) as the mean 
simulated track density for the first, or baseline sur- 
vey. We assessed how power changed in response to 
5 factors: 

Sample size (n, number of 8-km transects). 
We simulated survey efforts from 30 to 270 transects 
in increments of 30 transects. 

Risk of Type I error (a). When managing small 
threatened populations like those in southern Cali- 
fornia (Beier 1993) or Florida (Maehr 1990), the con- 
sequences of Type I error (incorrectly concluding 
that a population has declined) are less severe than 
Type II error (failure to detect a change). Therefore 
we determined power for 2-sided a = 0.1 and 0.2, in 
addition to the conventional 0.05. 

Magnitude of change. Because surveys designed 
to detect small increases (e.g., 10-20%) would be 
prohibitively expensive, and because management 
actions are unlikely unless larger changes are de- 
tected, we simulated track densities in the second 
survey that varied by 30% or 50% from those in the 
baseline survey. 

Direction of change. Managers of a threat- 
ened bighorn sheep population subject to preda- 
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Table 1. Density of cougar tracks on 28 stream-bottom transects on the Aravaipa-Klondyke 
study area in southeastern Arizona during 4 sampling periods, period 1 (October 1991), 
period 2 (April 1992), period 3 (October 1992), and period 4 (April 1993). 

Track densitya 

Length Period I Period 2 Period 3 Period 4 
Transect (km) n= 19 n= 25 n= 17 n= 17 

1 8 0 0 2 2 
2 7.5 2 0 0 2 
3 6.5 1 2 0 0 
4 8 0 0 1 
5 8 0 0 - 
6 8 4 0 1 0 
7 8 3 1 1 3 
8 8 b 1 1 0 
9 8 2 1 - 0 

10 8 5 0 - - 
11 8 2 0 2 0 
12 5 2 0 2 
13 6 -1 3 1 
14 5.5 - 1 - 0 
15 5.5 - 0 0 
16 6.5 1 2 2 
17 8 0 0 1 1 
18 7 1 0 0 0 
19 8 -- 0 
21 5.5 6 1 6 3 
23 5.5 3 - 0 
25 8 -0 0 
26 6 0 - - 
27 5.5 - - 0 
28 4.5 0 0 - 0 
29 5 0 - 
30 8 4 1 
31 6 4 1 - 
P(fit normal)c 0.70 0.007 0.10 0.06 
P(fit Poisson)c 0.67 1.00 0.99 0.90 
x 66.8 1.89 0.60 1.12 0.94 

(12%) (4%) (6%) (7%) 
SD 1.85 0.96 1.54 1.14 

aNumber of 0.5-km segments with tracks per 16-segment transect. For transects < 8 km 
long, we multiplied the proportion of segments with tracks by 16 to yield the number of 
segments expected on that route if the transect had been 8 km long. b Transect was not run during this period. 

Probability that column values fit a normal or Poisson distribution (Kolmogorov- 
Smirnov test). 

tion by cougars may be concerned with detecting 
an increase in a cougar population. In contrast, 
managers of a threatened cougar population may 
be more interested in detecting a decline. Be- 
cause track surveys have greater power to detect a 
decrease than an increase in track density (the 
variance of a Poisson variable equals the mean), 
we simulated both increases and decreases (of 
30% or 50%). 

Patchiness of change in track density be- 
tween the 2 simulated surveys. During a de- 

dine, cougars from low-quality 
habitat could shift their ranges 
to fill vacancies occurring in 
high-quality habitat. Thus track 
density might remain un- 
changed in the best habitat and 
decrease only in lower-quality 
habitat, increasing the standard 
deviation and lowering statisti- 
cal power. Similar patchy 
changes during a population in- 
crease could reduce statistical 
power. Therefore we tested 
power under 2 conditions: (1) a 
uniform change in track density 
on all transects between the 2 
survey periods, and (2) no 
change in track density on half 
of the transects and a 60% or 
100% change in track density 
on the other half of the tran- 
sects (to produce overall 
change of 30% or 50%, respec- 
tively). 

For each combination of the 
5 factors, we used Resampling 
Stats software (Simon 1995) to 
simulate 1,000 survey efforts, 
each consisting of a baseline 
survey (with mean track density 
1.14, following a Poisson distri- 
bution) and a follow-up survey 
(with mean track density 30% 
or 50% lower or higher). We 
drew 500 independent samples 
(each of size n) from the pooled 
simulated observations (2n), 
tallied the number of samples 
whose mean was at least as ex- 
treme as the follow-up mean, 
and divided this tally by 500. 
This proportion is the exact 1- 
tailed significance level for a 

test of the hypothesis that the baseline and follow- 

up surveys reflect a population of constant size. We 
doubled this proportion to yield a 2-tailed P-value. 
Because this test makes no assumption about the 
distribution of the variates, it was appropriate for 
our simulated Poisson data and also for our simula- 
tions of patchy change in sign density. We then 
computed power as that fraction of the 1,000 com- 
puted significance levels that were less the speci- 
fied a (0.05, 0.1, or 0.2). We used 80% as a mini- 
mally acceptable level of power. 
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In addition to simulating these combinations of 
conditions, we estimated the power of different sam- 
pling efforts to detect a non-patchy 10% decrease in 
track density at a = 0.20. For this effort we simulated 
efforts of 300-1,000 transects in increments of 50 
transects. 

Simulation results 
Power increased as number of transects increased 

(Fig. 2). For large (30-50%) changes, the number of 
transects needed to achieve 80% power varied from 
about 30 transects (to detect a 50% decrease with a = 
0.20) to about 190 transects (to detect a 30% increase 
with a = 0.05). In simulations to detect a small (10%) 
decrease at a = 0.20, 400 transects had only 48% 
power, and 700 transects were needed to achieve 
80% power. Most power curves had an inflection 
point at 75-90% power; large increases in number of 
transects were necessary to make small marginal 
gains in power beyond that level. 

By accepting an increased risk of Type I error, the 
power of a given survey effort could be increased, 
or alternatively, the number of transects needed to 
achieve 80% power could be reduced. The gain in 
efficiency in increasing a from 0.1 to 0.2 was 
greater than when increasing a from 0.05 to 0.1. 
For example, about 140 transects would be needed 
to be 80% confident of detecting a 30% decline at a 
= 0.05, 120 transects for a = 0.1, and 90 transects 
fora = 0.2. 

Power increased dramatically as the magnitude 
of change increased from 30% to 50%. For exam- 
ple, about 50 transects were needed to detect a 
50% decline versus about 140 transects needed to 
detect a 30% decline, with 80% power at a = 0.05. 
As expected, track surveys also had more power to 
detect a population decrease than an increase (Fig. 
2). 

However, power decreased by <2% when a change 
in track density was concentrated on half of the tran- 
sects instead of occurring uniformly over all tran- 
sects. Patchiness of change was the only factor that 
had a negligible impact on survey power, and there- 
fore its impact is not illustrated in Fig. 2. Thus spatial 
patchiness in population increase or decrease will 
not compromise power in a survey effort that other- 
wise meets a manager's needs. 

Discussion 
We estimate that 30-190 transects would be 

needed to detect a 30-50% change in a cougar pop- 
ulation on the basis of 8-km track transects in dry 
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Fig. 2. Power of track surveys to detect decreases (upper panel) or 
increases (lower panel) in track density in relation to number of 
transects, magnitude of change, and risk of Type I error. In each 
panel, the dashed lines reflect a 50% change and the solid lines a 
30% change in track density between the baseline and follow-up 
surveys. The label on each line indicates a (0.05, 0.1 0, or 0.20). 

washes. Because 700 transects are necessary to de- 
tect a 10% decrease at a = 0.20, we conclude that 
track surveys to detect small changes at any rea- 
sonable a would be prohibitively expensive. This 
supports Van Sickle and Lindzey (1992) in that a 
track index would detect only "relatively large 
changes in cougar population size" reliably. Simi- 
larly, Kendall et al. (1992) used a combination of 
field data and simulations to conclude that surveys 
using bear scat on trails would not detect small an- 
nual fluctuations in bear populations, but that such 
surveying on many long trails could detect sub- 
stantial, potentially threatening declines. Small- 
wood and Fitzhugh (1995) recommended 44 
quadrats, each with 2 or 3 transects (11.3 km long) 
for monitoring state-wide trend of cougar popula- 
tions in California. 

Although we found that considerable sampling 
effort is required for track surveys to detect large 
population changes, we believe that track surveys 
are better than the alternatives. Track surveys can 
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yield statistically valid inferences about population 
change, unlike indices based on hunter harvests or 
depredation data. Compared to capturing, mark- 
ing, or other more direct measures, indices based 
on animal signs are inexpensive, easily replicated, 
and easily standardized among observers. Also, ob- 
serving sign does not influence the target popula- 
tion. 

We feel that 80% power is a reasonable goal for 
such surveys. A lower target would result in real 
changes in population going undetected. If a man- 
ager is willing to accept lower power, we question 
whether the survey has a purpose other than making 
the public think that the manager is "doing some- 
thing." On the other hand, 80% approximates the in- 
flection point on most of the power curves (Fig. 2). 
Increases in power beyond this point are achieved at 
high marginal cost. 

The number of transects needed to detect a 
change with 80% power depends on the magni- 
tude and direction of the change that a manager 
wishes to detect, and on the manager's willingness 
to accept Type I error. The specific management 
situation will determine how these parameters are 
chosen, but we offer some general conclusions. 
First, track surveys that are intended to promptly 
detect a population decline do not require as much 
effort as surveys intended to detect a population 
increase. Second, we believe that an a > 0.05 is a 
reasonable choice in most realistic management 
situations. For threatened populations, an a of 
0.10-0.20 is a better alternative (presuming that 
emergency steps would be taken if a decline is de- 
tected in time) because the potential consequence 
of Type II error is extinction. For hunted popula- 
tions (where monitoring is designed to ensure that 
a population is not being overexploited), we favor 
an a of 0.05-0.1 because Type I error could lead to 
negative (and incorrect) public perception of a 
hunting program. 

Unlike Kendall et al. (1992), we did not model the 
process of track deposition on each segment of a trail. 
Managers can thus readily test if their data meet our sin- 
gle assumption that track density per transect follows a 
Poisson distribution. If observed data depart signifi- 
cantly from a Poisson distribution, our estimates of 
power and required sampling effort will not be valid. 
Our results are independent of our starting density of 
1.14 segments with tracks/transect and thus apply to 
any track counts that follow a Poisson distribution. 

We did not expect the low correlation we found 
between consecutive observations of track den- 
sity on a given trail. In cases where serial correla- 
tion is evident, a Wilcoxon matched-pair signed- 

rank test would yield greater statistical power. 
The Wilcoxon test should have no negative statis- 
tical consequences even with data like ours. We 
only made a simple comparison between baseline 
and follow-up periods. Time series analyses (e.g., 
Harris 1986, Gerrodette 1987) may have greater 
statistical power to detect trends, but only for 
long-term (>10-12 yrs) data sets and only when 
statistical assumptions are met (Kendall et al. 
1992). 

Managers wishing to use to track surveys should 
locate transects throughout an area used by a tar- 
get population and should avoid the temptation to 
place transects only in areas expected to have 
abundant cougars. Without transects in marginal 
habitats (where increases and decreases in popula- 
tion often occur earliest and are most pro- 
nounced), an effort will have lower than expected 
power and will not detect change promptly. On 
the other hand, if survey transects are located in 
both superior and marginal habitat, our results 
show that power will not be compromised by the 
expected patchiness in population change. Be- 
cause we modeled patchiness of an unrealistically 
extreme type (all change confined to half the tran- 
sects), this conclusion should apply broadly. Al- 
though we advocate placing transects throughout 
an area occupied by a target population, we en- 
dorse the recommendation of Smallwood and 
Fitzhugh (1992, 1995) that transects be located 
where local cougars (of any size population) are 
most likely to travel and where their tracks are 
most likely to be visible. 
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