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1.0 Introduction 

1.1 Objectives 

Climate sets the stage for a landscape’s species and ecosystems, albeit a moving stage.  Temporal 
variability over a wide range of scales – from hourly events, year-to-year variation to decadal shifts 
and centennial trends – is a strong determinant of the state of populations and systems now and 
where they are headed.  In addition, a site’s climate variability tends to show strong correspondence 
with what is happening regionally and to dynamics at hemispheric scales.  Consequently, 
understanding historical and current patterns in local climate and its links to regional to global 
processes is crucial for park monitoring, management, and research goals. 
 
However, answering climate-related questions can be problematic.  This can be because available 
climate datasets are often not ready ‘off the shelf’ for such applications without careful 
preprocessing or because appropriate tools for analyzing climate data are not well known or 
understood by users.  Problems can also arise because nearby climate stations do not exist, or the 
necessary variables were not recorded for the period required.  The goal of this report is to guide the 
development, analysis, and interpretation of climate data to address questions relating park 
resources and climate. 
 
The objectives of this report are then: 

(1) To layout a methodology for developing research-grade climate datasets appropriate for 
resource management science. 

(2) To introduce the array of analysis techniques available for answering questions we often ask 
regarding climate dynamics and their interaction with landscape processes. 

 
1.2 Approach 

My approach is to identify common, key issues encountered when working with climate data and 
then suggest approaches and resources for pursuing specific solutions most likely to be useful to 
NPS personnel.  The report is more guide than cookbook:  for the specifics of any given process, I 
point to references to serve as an entry into the literature.  In Figure 1, I lay out a workflow diagram 
that follows the overall components of this guide – the diagram portrays generic elements and 
decision points that are common to climate observation-based studies. 
 
I start off with an outline for laying out a project’s or program’s data requirements as this will 
establish what problems are worth fretting over and what methods may or may not be appropriate 
(section § 2.0, Figure 1a).3  Second, I discuss methods for handling problems that typify station 
records (§ 3.0, Figure 1b).  Next, I go through common analysis techniques and their interpretation 
(§ 4.0, Figure 1c).  I wrap up with an overview of key considerations in the implementation of these 
processes (§ 5.0) – you may wish to review that synopsis early on to see the take-home messages. 
 
For most situations, I draw on established statistical methods that are relatively common in 
environmental sciences and generally found in statistical software packages, and provide references 
where this is not so much the case.  I cover caveats that go with these solutions and analyses.  I give 
examples of some techniques in the figures, and make use of their captions to reveal detailed 
considerations needed to implement such methods.   
                                                 
3 In the digital version of this report, cross-references to sections (§’s), tables, figures, and footnotes are hyperlinked.  
Websites linked to in the report were last accessed December 2009. 
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2.0 Establish Goals, Identify Requirements 

Different research questions exploring climate processes have, of course, different data 
requirements (Figure 1a).  Clearly establishing your research questions and then corresponding data 
requirements is key.  Some requirements may be obvious, such as temporal and spatial 
specifications.4  Others may be more subtle, such as what data problems need to be dealt with or can 
be ignored and which analytical techniques are appropriate.  Creating a technically-fancy infilled 
daily dataset could be a lot of effort for little payoff if the goal is to look at centennial trends.  On 
the other hand, such work can give greater confidence in evaluating trends in day-specific variables 
such as growing-season onset and termination. 
 
2.1 Data requirements from hypotheses 

Best practice starts with a clear a priori statement of hypotheses to be evaluated.5  This is preferred 
over undertaking a large number of analyses in an attempt to find significant relationships.  The 
downside of undirected numerous comparisons is there is a reasonable probably of one or more tests 
having statistically-significant results due to random chance alone.6 
 
Your hypotheses will dictate the specific data needs of a research problem.  Use their statement as a 
guide to identify: 
 

• Variables of interest – what are the system drivers of consequence?   
• Spatial scales of interest – single site vs. landscape or regional analysis, for example.  

(§ 2.2) 
• Temporal scale – e.g., are daily event structure and the occurrence of extremes important, 

or just seasonal means? (§ 2.2) 
• Record length and/or spatial density – to assure sufficient observations in time or space to 

reveal the patterns hypothesized. 
 
2.2 Issues of time and space scale 

Through this process, some forethought needs to be given to capture not only the multivariate but 
also multiscale nature of climatic controls on organisms and ecosystems.  Selecting relevant 
temporal and spatial scales for analyzing meteorological data to reveal climate’s impact can be 
guided by two principles:  

Characteristic scales.  Ecological processes tend to operate at characteristic temporal and spatial 
scales (Figure 2c, d; Delcourt et al. 1983, Urban et al. 1987).  These initially prescribe climate 
analysis scales for given ecological processes.  Note, however, there is not a 1:1 correspondence 

                                                 
4 For example, spatial data specifications include spatial domain and station density or grid interval.  Temporal 
specifications include record length requirements and timestep. 
5 See Schumm (1991: Chapter 2) for discussion of the scientific method in practice. 
6 Regarding such ‘fishing expeditions’ or ‘data dredging’ – If analyses use, for example, a probability threshold for 
Type I Errors24 of α =0.05, then there is a theoretical likelihood that one out of 20 tests will give statistically-significant 
results due to random chance alone.  If such multiple comparisons are part of a directed design, then this error can be 
controlled by setting an acceptable experiment-wise error rate and calculating a corresponding probability threshold for 
each comparison. This raises the bar for any comparison to be significant (i.e., lowers the probability threshold for each 
individual comparison).  For more on multiple comparisons and experiment-wise error rate, see: Yandell (1997: §6.1) – 
available in part on Google Books (see References).  Other multiple comparisons techniques are familywise error rate 
and false discovery rate.  Another approach to avoid spurious results in any analysis is cross-validation, where analysis 
is re-tested on a random subset of data that were withheld from the original analysis. 
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between characteristic temporal/spatial scales for climatic and ecological processes (Figure 2b; 
see caption). 

Scale interactions.  While climatic and ecological processes have characteristic scales (Figure 
2), factors controlling them operate across the range of scales.  Climate forcing, for example, 
occurs through integration of finer effects and constraints of coarser ones.7  A mismatch in 
temporal scales of aggregating station climate data (e.g., monthly values) can miss important 
relationships.  Such is the case when the critical impact of weekly weather events on, for 
example, population processes is not captured by monthly data (e.g., Hallett et al. 2004; see also 
§ 4.4.2: Process timescales differ, Mode 3).   

Spatially, a broader view of climate variability provides regional context to local climate forcing 
(§ 4.7) or, broader yet, an understanding of how hemispheric processes (e.g., El Niño) set the 
stage for local ecology year to year (§ 4.8).  For the latter, Stenseth and Mysterud (2005) 
demonstrate the benefits of the span of spatiotemporal scales implicit in analyses linking 
hemispheric climate to local ecology (see § 4.8.3: Circulation indices broadly integrative). 

 
There are some common pitfalls in identifying suitable scales for aggregating climate data to reveal 
forcings on ecological systems.  These include selecting the level of aggregation based on: 
 

• What data are readily available – e.g., for temporal aggregation: monthly or annual means, 
when daily or hourly data may be more appropriate 

• A poor understanding of ecological processes and their controls – either because a study is 
exploratory (‘a fishing expedition’) or established notions of how a system works are not 
well vetted 

Such pitfalls are often difficult to avoid, but recognizing such limitations from the start can aid in 
hypothesis formulation, analysis choice, and interpretation.  Timescale mismatching and 
aggregation issues are further discussed in the context of timeseries analysis, § 4.4.2. 
 
2.3 Data requirements of analytical methods 

The next step is to identify what classes of analytical methods are needed to address your key 
questions and their data requirements.  Are you interested in solely descriptive statistics (means, 
variances, frequency distributions; § 4.1)?  Do you as well aim to statistically test relationships 
either within the climate data or with other site variables (e.g., trend, correlation, and spatial 
coherence analyses; § 4.3- 4.8)?  You may need to explore analysis options covered in these sections 
to identify corresponding requirements.  Some general points on data requirements: 
 

• Descriptive statistics require sufficient and unbiased sampling of the record to give 
representative results 

• Statistical tests expect that certain assumptions about the data be met – such as having 
observations that are independent, normally (Gaussian) distributed, and identically 
distributed 

  
In regards to the latter bullet, spatial and temporal climate data are characteristically not 
independent and some variables, such as precipitation, not normally distributed.  I talk about these 
issues as they come up, yet keep in mind that some statistical methods are more forgiving than 
others in their requirements. 
 

                                                 
7 Scale linkage through integration of finer-scaled effects and constraints of courser ones reflects the hierarchal nature of 
biological and geophysical systems (Allen and Starr 1982, Holling 1992).   
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In dataset development and data analysis sections (§ 3.0- 4.0), I point out key requirements for many 
of the techniques I discuss.8  Consult statistical references for specifics on these requirements, tests 
for these requirements, and possible workarounds (e.g., transformations).  Some of this material can 
be found in on-line statistical texts and statistical software documentation (e.g., Helsel and Hirsch 
2002, Schreuder et al. 2004, McDonald 2009, Garson 2009).9  A highly-regarded reference for 
standard (parametric) tests (e.g., linear regression) is Sokal and Rohlf (1994) and for non-parametric 
tests (e.g., rank statistics) is Conover (1999), though there are many other useful texts along these 
lines.10  Books focused on statistical methods in geophysical sciences include von Storch and 
Zwiers (2001),11 Helsel and Hirsch (2002),9 and Wilks (2006).12  ‘R’ is a powerful statistical 
package which includes many of the techniques discussed – it is available free online.13  On-line 
calculators for some tests include Kirkman (1996).14   
 
2.4 Requirements guide what is possible with what is available 

Together, data requirements dictated by your research hypotheses and by methods to test these will 
guide station selection and screening of the data (§ 3.0).  For some research questions, available 
station data may not be up to the task.  Alternatively, regional high-resolution gridded temporal 
climate data may do well for certain purposes (e.g., PRISM:15 Daly et al. 2002, 2008, Di Luzio et al. 
2008; Hijmans et al. 2005).  Baron (2006) illustrates the use of a gridded dataset for point 
applications.  Surrogate variables are also options for exploring climate processes of interest, such 
as surface hydrology to reflect watershed climates (e.g., Stohlgren et al. 1998) or station variable 
correlates (e.g., MTCLIM: Thornton et al. 2000, Running et al. 1987).16 
 

                                                 
8 Of the techniques discussed in this report, linear regression is a one employed in many situations.  I introduce it in the 
context of station change and missing data (§ 3.4.2- 3.4.3, § 3.6) and later in trend analysis and bivariate comparisons 
(§ 4.3.1, § 4.4).  If you use regression in other contexts, still refer to these sections (especially § 3.4.3) regarding 
requirements, implementation, and pitfalls. 
9 General online resources include: 
• Helsel and Hirsch (2002):  http://pubs.usgs.gov/twri/twri4a3/html/pdf_new.html 
• Schreuder et al. (2004): http://www.fs.fed.us/rm/pubs/rmrs_gtr126.html  
• Lane (2007) – HyperStat Online Statistics Textbook: http://davidmlane.com/hyperstat/index.html  
• McDonald (2009) – Handbook of Biological Statistics: http://udel.edu/~mcdonald/statintro.html  
• Garson (2009) – Statnotes: http://www2.chass.ncsu.edu/garson/PA765/statnote.htm 
• SPSS tutorial: http://www.stat.tamu.edu/spss.php  

10 Also:  
• For linear regression, Draper and Smith (1998) 
• Crawley (2002), a stats text with S-Plus applications 
• Crawley (2007) is a reference manual for the R statistical language.13  Also, see Verzani (2004) – available in part 

on Google Books (see References).  
11 von Storch and Zwiers (2001) available in part on Google Books (see References). 
12 Wilks (2006) available online on “Scribd:” http://www.scribd.com/doc/7128720/Statistical-Methods-in-the-
Atmospheric-Sciences-Daniel-Wilks-  
13 R site: http://www.r-project.org/.   A USGS course on R has useful materials online: 
http://www.fort.usgs.gov/brdscience/LearnR.htm, including resources listed at: 
http://www.fort.usgs.gov/brdscience/LearnR.htm#References. 
14 Kirkman (1996): http://www.physics.csbsju.edu/stats/; see also http://www.physics.csbsju.edu/stats/Index.html.  
Also: Wessa (2009) – http://www.wessa.net/rwasp_spectrum.wasp.  These and other on-line tools are presented as 
possible resources, not as an endorsement or reflecting an assessment. 

15 PRISM is a ‘smart interpolation system’ that uses location-specific relationships among elevation, aspect, basin 
configuration, etc. and minimum and maximum temperature and precipitation to develop spatial interpolation  
functions. 
16 MTCLIM estimates solar radiation and relative humidity based on their physical relationships with minimum and 
maximum temperature and precipitation. 
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3.0 Methods for Making Climate Records Useful 

3.1 Types of problems 

3.1.1 Station issues 

Once climate data requirements are laid out and station datasets identified as appropriate to these 
needs, the next task is to check for and deal with problems in these stations’ records (Figure 1b).  
Nearly all station records have such problems, unless they have been extensively processed by 
another party (e.g., NOAA U.S. Historical Climate Network dataset, USHCN: Easterling et al. 
1996, 1999, Endoe 2009)17 – issues associated with processed datasets are discussed in the next 
section (§ 3.1.2).   
 
Problems that typify station records are: 
 

• Data errors – resulting in physically implausible values and questionable outliers (§ 3.3.1, 
§ 3.3.2) 

• Collection biases (§ 3.3.3) 
• Station changes – changes in location and instruments, changes in station environs (§ 3.4) 
• Record length – whether sufficient for detecting temporal patterns (§ 3.5) 
• Missing observations (§ 3.6) 

These issues and common solutions are laid out in the sections indicated.  I also discuss important 
tasks to do throughout, namely, to track data changes (§ 3.2) and document and evaluate the effects 
of your processing (§ 3.7).  As you see from this list of issues to work through, creating a credible 
dataset suitable to your research questions requires an integrated, multi-stepped quality control (QC) 
process – some stages may be automated, but ultimately the process entails hands-on decisions 
(Peterson et al. 1998b: §5).  Decisions are facilitated by involving those who are familiar with the 
region’s climate and with the workings and limitations of QC tests. 
 
As you evaluate the results of your efforts to create a usable dataset, keep in mind that individual 
station data problems are sometimes severe enough – too many missing values, intractable station 
changes – that estimated (corrected, infilled) values overwhelm original information, and it 
becomes more prudent to drop a station and rely on a nearby record. 
 

3.1.2 Processed dataset issues 

In the case of processed ‘cleaned-up’ data, your job is not over quite so easily.  Understand what 
methods were used to handle these problems and evaluate if these methods are consistent with your 
needs.  Judge if their techniques altered the data in a way that obscures a key process of interest, 
such as infilling missing days in mountain stations based an adjustment of valley records when 
understanding elevation contrasts are your research goal.   Processing centers regularly flag 
modified datapoints and may offer versions with original data and data after different stages of 
processing so you can backtrack to the level of adjustment that matches your requirements (e.g., in 
USHCN Version 1).18 
 
One class of processed climate data are area-averaged summaries.  Area averages present their own 
issues.  This is especially the case for climatically heterogeneous domains, such as U.S. Climate 

                                                 
17 Easterling et al. (1996, 1999) constitute USHCN Version 1: 
http://www.ncdc.noaa.gov/oa/climate/research/ushcn/ushcn.html.  Endoe (2009) provides a summary of the current 
research version (Version 2): http://www.ncdc.noaa.gov/oa/climate/research/ushcn/.  See also § 3.4.6 and footnote 59. 
18 Four levels are offered for USHCN v. 1 http://www.ncdc.noaa.gov/oa/climate/research/ushcn/ushcn.html#DATA  
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Divisions (Guttman and Quayle 1996, CLIMAS 2002).19  Division dataseries are unweighted means 
of available stations at a given time.  This means that available stations are not incorporated in 
proportion to how well they represent the domain’s climate.  Resulting problems include: 

(1) As stations come into and leave the averages, the spatial representation within a domain 
shifts through the record.  This is especially a concern over topographically-diverse areas. 

(2) Averages of station records blend signals – the resulting signal’s temporal variance is 
reduced and no longer realistically represents a region’s climate.  The degree of such signal 
blurring changes as stations come and go. 

For these reasons, it is preferable to base analyses on individual station records.  With these caveats 
in mind, however, areal averages can facilitate regional monitoring objectives (CLIMAS 2002, 
Wolter and Allured 2007).  To reduce some issues with U.S. Climate Divisions, Wolter and Allured 
(2007) propose a revision with divisions based on climatic similarity.20   
 
3.2 Version control and change flags 

As you develop a workable dataset, document your process and provide means to undo your 
changes.  Best practices dictate that: 

• Adjusted, removed, or infilled observations be indicated with a flag 
• Version control be exercised so that changes can be recovered, back to the original data if 

need be 

Such tracking is crucial throughout the process of developing datasets and allows for evaluation of 
implemented changes.   Include these elements in your documentation (§ 3.7).   
 
3.3 Data errors, outliers, and biases 

Data errors and biases come from observation collection, coding, and processing errors21 and 
instrument and collection-protocol biases.  These problems can be identified through screening for 
nonsense values (discussed next) and outliers (§ 3.3.2) and testing for known biases (§ 3.3.3). 
 

3.3.1 Screening for reasonable values 

Common quality checks for meteorological data are outlined in NPS Climate Data and Monitoring 
Options (Redmond et al. 2008); also refer to Peterson et al. (1998b: §2, App. A).22  A good, generic 
guide to data checking is provided by Chatfield (1995: §6.4).23  Screening can catch data 
transcription errors and common instrument errors such as dropouts, drift, biases, and other glitches 
if of sufficient magnitude (Figure 3).  Such quality checks include nonsense and plausibility checks, 
such as a day’s minimum temperature greater than the maximum and values beyond physical limits 
(see Table 1 for an example layout).  Other checks look for questionable outliers and unusual 
behavior, such as spikes, step changes, or flat lines (§ 3.3.2). 
 

                                                 
19 U.S. Climate Divisions are laid out more along watershed, economic, and political boundaries than by climatic (and 
so general ecological) similarity. Interactive maps of current conditions by U.S. Climate Division are at: 
http://gis.ncdc.noaa.gov/website/ims-cdo/div/viewer.htm 
20 Wolter and Allured (2007): http://wwa.colorado.edu/IWCS/archive/IWCS_2007_Jun.pdf, and see 
http://www.esrl.noaa.gov/psd/people/klaus.wolter/ClimateDivisions/. 
21 Be aware that some processing errors may include previous attempts to correct errors and you may need to ‘undo’ 
these (Peterson et al. 1998b). 
22 For a detailed review of errors and correction techniques for hourly data from automated networks, see Wade (1987). 
23 Chatfield (1995) – available in part on Google Books (see References).  
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Some data screening is done by data archive centers; otherwise, such processes need to be 
implemented as part of your own data protocol.  You may decide that additional custom filtering of 
the data should be employed to meet specific needs of a project (cf. Redmond et al. 2008). 
 

3.3.2 Outliers 

Checks regarding unusual behavior can be among the most challenging to design.  This is because 
errors can be hard to discriminate from real extremes and other meteorological dynamics.  Any 
scheme to identify outliers as ‘bad data’ runs the risk of rejecting real events that have important 
ecological or hydrological consequences.  Formally, we discuss this as a Type I error, that of 
rejecting good data.24  Generally, climatologists are adverse to this error in favor risking a Type II 
error (accepting bad data) and so of retaining all outliers (provided they lie within physically-
plausible limits).  For your application, weigh the relative consequences of these errors to your 
analysis to decide how lax or aggressive to be in filtering out extreme values.  NOAA regional 
climate centers, for example, differ in balancing these errors depending on their geography and 
prevailing user needs.25  Outlier effects on regression analysis are discussed in § 3.4.3.1. 
 
Detection and rejection decisions for outliers or other unusual behavior are usually applied to daily 
or hourly data.  These rely on a variety of methods that check for: 
 

• Multivariate physical consistency – similar dynamics in physically-related parameters 
(e.g., among minimum and maximum temperatures, cloud cover, relative humidity, and 
precipitation) 

• Climatological consistency – staying within the range of climatological norms, based on 
longterm record statistics 

• Temporal consistency – rate of change tests looking for spikes and step changes 
• Spatial consistency – similar dynamics in records of nearby stations 

Detection processes can be automated – however, manual inspection is advised before flagged 
outliers are rejected.  Meek and Hatfield (1994) present basic methods for (1) physical limits, 
(2) climatological filters, and (3) rate of change tests for daily and hourly records for an array of 
climate variables. 
 
Multivariate physical consistency.  For multivariate checks, Gandin (1988) gives examples of 
numerical tests and Redmond et al. (2008) of logic-based ones.   
 
Climatological limits.  Meek and Hatfield (1994) present a variety of climatological tests generally 
based on absolute ranges from the record (Figure 4c).  This creates a rather strict test.  More 
common climatological filters use some multiple of the standard deviation (SD) from the longterm 
mean to set limits.  This multiple: 

 
• Is usually large (e.g., >3 SD) – so more liberal than record limits 

                                                 
24 More formally, a Type I error is the error of rejecting a null hypothesis (H0) when it is true and should not be rejected.  
In this context, H0 is that an outlier is from the same population as other observations (i.e., ‘good data’).  A Type II error 
is not rejecting a H0 when it is false and should be rejected. 
25 For example, the Western Regional Climate Center (WRCC; Table 2) leans toward retaining all station data, 
including outliers which may or may not be true extremes.  The High Plains Center (HPRCC), on the other hand, tends 
to eliminate likely outliers, with some possibility of tossing true extremes.  These practices relate to common uses of the 
data in the respective regions – HPRCC data uses include crop models, which may be highly sensitive to daily extremes 
and so thrown off by outliers.  WRCC’s philosophy is that end-users can best determine criteria for handling outliers 
based on their specific application.  Where these centers’ regions overlap, data for the same station can differ depending 
on which center’s dataset is accessed.  (Stephen Gray, personal communications) 
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• Depends on climate variable – e.g., 5 SD for temperature (Figure 4d).  For non-normally 
distributed data, such as precipitation, a multiple of the coefficient of variation (CV = 
SD/mean) is can be used; alternatively, data can first be normalized with an appropriate 
transform (§ 3.4.3.1) and then SD limits determined and applied in transformed space. 

• May be asymmetrical – greater limits on one side of the mean than the other 

Climatological limits also typically vary by season (Figure 4c, d) and can depend on site 
characteristics (for example, whether a site is maritime vs. continental, at high vs. low elevation, or 
in an air-shed prone to thermal inversion or cold-air drainage). 
 
Peterson et al. (1998b: §4) review a variety of SD-based methods for detecting temperature outliers.  
SD thresholds may be staged – with a moderate limit (e.g., 2.5 SD) calling for additional evaluation, 
and a higher limit (e.g., 5 SD) outright rejection (Figure 4d).  Box-and-whisker plots, described in 
§ 4.6.1, provide another frequency distribution-based method for identifying outliers.  Longterm 
trends should be removed before implementing distribution-based techniques as trends can 
substantially contribute to a record’s variance – it’s more appropriate to judge outliers against a 
detrended record variance or vs. the local (shortterm) variance (Peterson et al. 1998b).  
 
Temporal consistency.  Some temporal inconsistencies, such as spikes and step changes, can be 
detected visually (Figure 4a) or numerically with rate of change checks (Meek and Hatfield 1994) 
(Figure 4b).  The opposite case, too much temporal consistency – a flat line – suggests data dropout 
due to observer, instrument, or coding error.26  Outliers and unusual behavior found in temporal 
tests can be further scrutinized with spatial consistency checks relying on neighbor comparisons 
(e.g., Eischeid et al. 1995; and Figure 4d caption).  Used in tandem, these consistency tests bring 
both temporal and spatial perspectives to bear on judging outliers.27 
  
Spatial consistency.  In spatial checks, a primary consideration is how far away a neighboring 
station can be and still be relied on.  This spatial correlation length scale depends on: 
 

• Climate variable – spatial correlation generally drops off less rapidly for temperature than 
precipitation, especially for regions and seasons prone to convective rainfall (with a 
patchy distribution on hourly and daily bases) 

• Time aggregation interval – spatial correlation generally extends farther for longer time 
averages (hourly vs. daily vs. monthly) 

• Terrain uniformity – spatial length scale diminishes more quickly over heterogeneous 
terrain (e.g., regions that are mountainous, with significant landcover changes, or with 
varying degrees of lake/maritime influence) 

   
Spatial tests are more readily applied in regions under a relatively uniform climate regime, such as 
the Great Plains, than one with sharp physiographic contrasts (e.g., the Rocky Mountains) or 
extremely sparse precipitation (e.g., the Southwest).  These factors are discussed further in § 3.6.5.  

                                                 
26 Data flatlines can be identified as a series of observations with no or little change in value.  These show up as an 
outlier in plots of short-period running standard deviations (like a running mean).  Dropped observations should be 
marked as missing data.  As an example test, implemented for PRISM input quality control for daily maximum and 
minimum temperature, a flatline period is identified as: 
• ≥ 2 consecutive days with observations of 0.0ºC 
• ≥ 10 consecutive days with observations within ± 0.4ºC. 

5-10 consecutive days with observations within ± 0.4ºC are seen as a potential flatline period.  These periods are 
statistically evaluated based on whether the 5-day moving standard deviation of the target station differs from that of 
surrounding stations; if differs and lower, then it is a flatline period.  (Chris Daly, personal communication)   
27  A method that uses spatial comparisons to detect temporal inconsistencies is double mass analysis, discussed in 
§ 3.4.6 in the context of detecting station changes. 
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Hubbard et al. (2007) and You et al. (2007) evaluate spatial methods for detection of outliers in 
daily surface temperature and precipitation data, respectively; Eischeid et al. (1995) implemented a 
multiple-test spatial approach. 
 

3.3.3 Collection biases 

Data collection biases include those from: 

Instrument calibration and design.  Poor or drifting calibration issues can be accounted for if a 
close-by instrument can be used to develop a correction function or if a later re-calibration is 
well documented.  Well understood biases associated with specific instrument changes are 
discussed in § 3.4.5.   

Time of observation for minimum and maximum temperature.  For stations using minimum and 
maximum thermometers, time of observation other than midnight but rather at the more usual 
early morning or late afternoon times creates a bias in monthly mean temperatures.  The bias 
can exceed 2ºC (Karl et al. 1986; Figure 5).  This inconsistency arises largely from the time 
thermometers are reset relative to passage of warm and cold fronts.28  This timing leads to cold 
biases in monthly means for morning reading stations and warm biases in means for late 
afternoon reading stations (Vose et al. 2003). 

This is particularly troublesome for evaluating trends if observation time has changed during a 
station’s history (see Figure 5 caption).  A correction for this bias is presented by Karl et al. 
(1986) and further evaluated by Vose et al. (2003). 

Missing observations that are time dependent (e.g., by weather, season, decade).  Dataseries 
with dropped days that are pervasive, for example, at the start of a record or for periods of 
inclement weather will incur undersampling biases with time (problematic for trend analysis) or 
for bypassed synoptic conditions (problematic for daily event and seasonal analyses).  Keep in 
mind the possibility that such temporal biases will interfere with questions being evaluated with 
these data.  In general, these biases are not formally accounted for in studies – though they 
should be.   

While missing days can potentially be infilled, the bias will persist in terms of lower variances: 
infilling estimation reduces variance in timeseries (see § 3.4.3.3: Reduction in variance).  
Judging temporal biases with respect to infilling missing observations is discussed further in 
§ 3.6.2.    

Multiday-accumulated totals for precipitation.  Daily precipitation series suffer from the 
accumulation of precipitation over several days due to: 

• Observer absence for manual precipitation gauges, resulting in several zero days 
followed by an accumulated value.  These are typically flagged as an accumulated total. 

• Sub-threshold input for tipping bucket gauges – If minor precipitation during a day 
doesn’t accumulate enough to tip the collector but does with more inputs in the next 
day(s), then correct precipitation amounts will not be recorded on corresponding days.  

                                                 
28 For stations with a morning observation time (e.g., 0700h), the passage of a warm front soon after thermometers are 
reset can result in the minimum thermometer retaining that 0700h temperature through the next 24 hours rather than 
capturing the next morning’s pre-dawn temperature, the diurnal-cycle’s actual minimum.  For stations with late 
afternoon observations (e.g., 1700h), the passage of a cold front after thermometers are reset can result in the maximum 
thermometer holding that 1700h temperature through the next day, rather than catching that day’s post-cold front max. 
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The only indication of an error will be if a nearby observer-read gauge shows distributed 
precipitation events during the same period. 

When the data goal is monthly totals, multiday totals can be summed in.  That is, unless the 
accumulation period crosses a month boundary.  Then totals must be parsed.  An accumulated 
total is often parsed out by day by apportioning the total guided by day-to-day amounts 
observed at a nearby station clear of these issues.  This approach is likely to meet with success if 
the stations have good correspondence in daily structure (e.g., with tests in § 4.6.1) and are likely 
to experience the same precipitation events (see § 3.3.2: Spatial consistency, and § 3.6.5: Spatial 
heterogeneity, regarding spatial correlation length scale).  Such corrected data should be omitted 
in daily analyses (§ 4.6).  If the total cannot be parsed in a defensible manner, then the total is 
dropped and all days included in the total are counted towards the months’ missing day 
tolerances (§ 3.6.1). 

 
An overview of manual station collection issues, such as for NWS cooperative network stations,29 is 
presented by Leffler and Redmond (2004);30 Daly et al. (2007) look at observer precipitation biases 
in detail.   
 
3.4 Accounting for station changes 

Station histories are rarely boring and tell of changes that give little consistency to observations.  
Troublesome station changes can as varied as: 

• Station relocations to vastly different sites (even if nearby) 
• New instruments with different response curves and accuracy (with no overlapping 

record) 
• Dramatic adjacent landuse change – such as the introduction of irrigation, pavement, or an 

overshadowing building 
 
Such changes introduce sharp, discontinuities into the record (Figure 6a).  These changes are for the 
most part artificial, that is, ‘non-climatic change points.’  Temporal inhomogeneities arise as well 
from gradual changes, such as instrument drift (§ 3.3.3) or slowly changing conditions in the vicinity 
of stations (§ 3.4.7): for example, as landscaping or natural vegetation grows up and closer, and rural 
areas become urbanized.  Peterson et al. (1998a) review many of these issues and numerical 
techniques to detect and handle them.  Correction of temporal inconsistencies is important – 
ignoring them can have a major impact on climate change assessment (Figure 7).  If, however, the 
intended use is for climate regime change detection, some detection and correction strategies are 
best avoided (see cautions in § 4.5.3). 
 
In this section, I discuss developing station histories as the first step toward accounting for station 
changes (§ 3.4.1) and then present several approaches for inhomogeneity correction depending on if: 

• The station has overlapping records spanning the change point (§ 3.4.2) 
• There is no overlap nor appropriate nearby station to guide adjustment (§ 3.4.4) 
• The change is due to well-documented instrument issues (§ 3.4.5) 
• There are reliable, nearby stations to guide adjustment – including cases where change 

points may be present but not sufficiently known from the station history (§ 3.4.6) 
• Changes are gradual due to environmental changes (§ 3.4.7) 

                                                 
29 National Weather Service (NWS) Cooperative Observer Program (COOP): http://www.weather.gov/om/coop/what-
is-coop.html.   Also referred as ‘co-op’ stations in this document. 
30 Online tutorial version: http://www.weather.gov/om/csd/pds/PCU6/IC6_2/tutorial1/Factors.htm  
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Section  3.4.3 gives a primer on regression – re implementation, interpretation, and cautions – as 
many of these approaches rely on this statistical method. 
 

3.4.1 Building station histories 

We have more confidence in numerical approaches for detecting and correcting temporal 
inhomogeneities if they are directed by knowledge of a station’s history.  Sussing out station 
changes can be an arduous process, however, and is one usually undertaken only if: 

(1) Only a few stations are targeted. 
(2) Their records are of high value with respect to a programmatic goal – such as for an 

important location. 
– and – 

(3) They bear a high probability of forming a high-quality record – that is, there’s enough 
original information to form a strong foundation for developing a credible correction 
protocol. 

 
To build a history for critical stations31 – 

• Consult station documentation to identify potential sources of temporal inhomogeneities, 
recognizing that not all changes get into such metadata. 
o For NWS co-op stations,29 Station History Reports (B-44 forms) are available from 

NOAA regional climate centers and state climatologists (Table 2).32  These reports 
describe station moves, instrument changes and major maintenance, and changes to 
the surrounding environment – though the reports are not necessarily complete.   

• Review repeat photography, which can provide additional insights especially for gradually 
changing environs.   

• Visit the site and its operator before undertaking a lengthy data protocol.  This can 
provide an understanding not gleaned from station history reports and save effort in the 
long run.  Intuition can be gained from: 
o Seeing station siting, instrument condition, and obvious recent environmental changes 
o Talking with operators, who very often have a longterm association with a station and 

can relate details that do not get into formal paperwork 
 
If a location or instrument change is designed with an overlap between the old and new records, 
adjustments can be relatively straightforward, using, for example, linear regression (§ 3.4.2).  
Without overlapping records, a common method is mean offset and ratio adjustment (§ 3.4.4).  
While introduced here for simple cases, these approaches form the basic elements of more complex 
record processing for well-documented changes and other inhomogeneities (§ 3.4.5– 3.4.7), merging 
sequential records of nearby stations (§ 3.5), and infilling missing observations (§ 3.6). 
 

                                                 
31 For a guide to problematic station siting and observation practices to look out for, refer to Peterson et al. (1998), 
Leffler and Redmond (2004),30 and Daly et al. (2007). 
32 Metadata describing station histories for NWS Cooperative and other U.S. stations are available from NCDC 
(http://www.ncdc.noaa.gov/oa/metadata/metadataresources.html) (see also State Climate Offices, Table 2). 
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3.4.2 Correcting known change points.  I: The simple case with overlapping records – Regression 

When there is sufficient overlap between outgoing (x) and new (y) station records, we can develop a 
linear regression conversion equation: 
 

y'(t) = b0 + b1 x(t)    , (1)
 
where a value from the outgoing record x(t), x at time (t), is adjusted to a value y'(t) consistent with 
the new record.33  The mark (') indicates that the value is estimated; b0 and b1 are the regression 
y-intercept and slope, respectively, determined from the observed (x,y).  An example correction 
based on overlapping instrument records is shown in Figure 7 for a precipitation gauge change – the 
correction had a substantial impact on a longterm trend analysis. 
 
Details in implementing regression are covered next (§ 3.4.3). 
 

3.4.3 Regression analysis primer – Implementation, interpretation, caveats 

While I’m presenting this primer on regression embedded in the section on correcting station 
changes, these guidelines apply to using regression with climate series in general.  I’ll refer back to 
this section for other applications later in the report.34 
 
3.4.3.1 Regression analysis implementation details – 

I discuss in this section considerations in implementing regression analyses – these are with respect 
to: 

(1) Timescale considerations 
(2) Numerical method 
(3) y-intercept method 

and the means to deal with: 

(4) Autocorrelation 
(5) Outliers 
(6) Data distribution requirements 
(7) Nonlinearity 

 
Time-related considerations: Record overlap, timestep, and season dependence.  There will be 
more confidence in developed conversion equations: 

• For cases with longer overlap periods  

• If the conversion timestep is at the original collection temporal resolution – e.g., daily 
rather than on temporally aggregated values.  Conversions at daily or weekly rather than 
monthly or longer time intervals are better able to capture nonlinear relationships.  On the 
other hand, there is little expectation that hourly data are correlated between sites except 
at the closest distances.35 

• If conversion relationships are season or weather-regime dependent.  Conversions that 
account for seasonal shifts in overall weather regime better reflect relationships between 

                                                 
33 It doesn’t matter which of the early or current record is adjusted – in the example implementations here and § 3.4.4, 
the earlier series is adjusted to match the current record.  
34 Other sections that deal with regression in some detail are § 3.6 (Missing observations), § 4.3 (Trend analysis), and 
§ 4.4 (Covariation among variables) 
35 Recall that station moves are not necessarily over short distances (§ 3.4). 
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locations.  One technique is to base analyses on a moving window (in time, e.g., spanning 
28 days) to avoid sharp temporal boundaries in conversions.36 

 
Numerical implementation.  Overlapping observed records (x, y) are used to calculate b0 and b1 in 
eq (1) using best-fit techniques: 

• Ordinary least squares (OLS) is the most common method for determining the equation 
that best fits the data – and is the primary technique provided in most statistical packages 
and presented in statistics books (cf. § 2.3).37  OLS assumes that observations are 
independent, normally distributed, and variance constant (homoscedastic).38 

• Robust regression methods, while less powerful than ordinary least squares, are alternate 
techniques that are ‘robust’ with respect to the limitations of non-normal or 
heteroscedastic data, as well as ‘resistant’ to the effect of outliers (discussed later in this 
section).39   

Ordinary least squares regression is the method of choice (in terms of testing power) when data 
distribution assumptions are reasonably met directly or with data transformations (discussed 
shortly), while robust regression techniques are more general and can be applied with fewer 
restrictions (Wilks 2006).  In the heteroscedastic (but still normal) case, an appropriate robust 
regression method is weighted least squares (WLS; Helsel and Hirsch 2002: §10.3).40  In WLS, 
observations (y) are weighted by the inverse-square root of their local variance41 – this accounts for 
variance changes along the range of y. 
 
Zero intercept.  Depending on the nature of the relationship between two records (x,y), you may 
force the y-intercept b0 to zero in setting up the regression analysis.  While this may make sense 
logically, in practice it generally does not produce the best results.  This is because, when not set to 
zero, b0 is the regression line’s y-offset determined across the full range of data and so is not so 
much about what’s happening at x = 0.(42) 

 
Serial correlation.  Climate data are typically serially correlated – that is, not independent.  I discuss 
tests and corrections for serial correlation in § 4.3.1 in the context of trend regression analysis – 
these are applicable here as well. 

 
Outliers and end members.  Outliers can have an undue influence on a regression analysis, 
especially for ordinary least squares regression.  Outliers near the end of a regression line (end 
members) have significant leverage in determining the slope (b1) of the line.43  To check for these 
issues: 

                                                 
36  In this approach, the conversion for any given day of the year is based on all daily data in the record that fall within, 
for example, a 28-day window centered on the day. 
37 von Storch and Zwiers (2001: §8.3.15-18)11 review pros and limitations of the least squares method. 
38 See Helsel and Hirsch (2002: §4.4)9 re tests to evaluate whether data are normal.  See also Steinskog et al. (2007).  
Residual plotting techniques for evaluating heteroscedasticity are discussed in § 3.4.3.2. 
39 Re: robust methods – 
• Wilks (2006: §3.1.1)12 presents a general discussion on robustness and resistance. 
• Helsel and Hirsch (2002)9 cover robust and resistant methods throughout their book; robust regression techniques 

are treated in Chapter 10. 
• Software packages – robust techniques are offered in R and SPSS, for example. 

40 Helsel and Hirsch (2002: §10.3)9 present a technique for performing WLS using OLS linear regression software. 
41 Local variance refers to variance of y determined for an interval along the range of y.  
42 If a regression line substantially misses the mark for observations near x = 0, a nonlinear transformation may be in 
order (covered later in this section: Transformations for modeling nonlinear relationships). 
43 See Helsel and Hirsch (2002: §9.5.1)9 re: outliers. 
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(1) Graph y vs. x (scatter plot) to reveal suspect points 
(2) Check that outliers are not errors (§ 3.3.2) 
(3) Test the sensitivity of the regression to outliers by re-running the analysis omitting them 
(4) If the regression is sensitive, apply a robust technique39 
 

Transformations – to adjust data distribution.  Transformations may be used to adjust data to 
normality (or at least to symmetry) and constant variance.44  Precipitation data, for example, are 
rarely normally distributed, as are variables reported in relative proportion or percentage units 
(relative humidity, % sunshine).  Common precipitation transformations include logarithmic, square 
root, and cubic root.45  A transformation of proportional data is arcsin[square root(x)], where 0.0 ≤ x 
≤ 1.0 (McDonald 2009).46  Wilks (2006: §3.4.1)12 lays out a process for determining the most 
appropriate power transformation for a given dataset.47  For issues arising from transformations in 
regression analysis, see § 3.4.3.3. 
 
Transformations – for modeling nonlinear relationships.  If you have reason to believe that the x, y 
relationship is nonlinear, examine the data initially with a y vs. x scatter plot.  Based on the shape of 
the plot, explore straightforward nonlinear transformations of either or both x and y.44,48  Re-graph 
to see if the conversion had the desired effect.  The resulting ‘linearized’ (x, y) is then used in the 
linear equation (eq 1).  As just noted, for concerns re transformations in regression, see § 3.4.3.3. 

 
3.4.3.2 Judging results – 

To decide if the regression equation you’ve developed is sufficient to the task:  

(1) Check the regression significance level (p value)49 – Reject the result if p is not within an 
acceptable level (e.g., p <0.01, or at least <0.05). 

(2) Judge the predictive power of the regression – The regression coefficient (= coefficient of 
determination), R2, can be interpreted as the proportion of the dependent variable’s (y’s) 
variance that is explained by the regression equation.  Ask if it is high enough to be useful 
(e.g., R2 >0.60 = 60% variance explained).  N.B., it is not sufficient to have high significance 
(a high p), as this does not necessarily mean that a large amount of the observations’ 
variance is explained.50 

(3) Visually check a scatter plot of the regression’s residuals (y'-y) vs. x – where y' and y are the 
predicted and observed value of the dependent variable in eq (1).  A residual plot can reveal 
problems in the data or regression model used.  If the residual plot shows a pattern other 

                                                 
44 Resources re transformations: 
• Helsel and Hirsch (2002: §1.7, §9.3, §9.6)9 
• Wilks (2006: §3.4.1) for more specifics12   
• von Storch and Zwiers (2001: §8.6.2)11 present complex functions to resolve common issues. 
• McDonald (2009: pp. 160-164) = http://udel.edu/~mcdonald/stattransform.html.  

45 Examples – (a) to apply a square-root transformation in eq (1), both x(t) and y'(t) would first be converted to SQRT 
(precipitation).  (b) see eq (5) in § 3.4.4. 
46 For percentage data, first convert x to a proportion: x/100. 
47 Power transformations, as some of those just noted for precipitation, include power of x (e.g., square-root x1/2, x2, 
inverse x-1), exponential (e.g., ex, e-2x), and logarithmic [ln(x)]. 
48 Many statistical and spreadsheet packages have nonlinear line fitting routines that can aid in exploring possible x-
transformations, such ‘trendlines’ in (Microsoft Office) Excel (for trendlines options, select: display equation, display 
R-squared). 
49 The p-value is the probability that the relationship found is due to chance alone, rather than to a hypothesized 
relationship.  More formally, this is the probability of committing a Type I Error (see footnote 24).  von Storch and 
Zwiers (2001: §4.1.7, 4.1.9-.11)11 review the interpretation of statistical tests. 
50 The interpretation of p vs. R2 is also discussed in the context of teleconnections (§ 4.8.3: Prediction). 
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than a random normal, homoscedastic dispersion from a zero-slope line, then it is likely that 
transforms to adjust for data distribution issues or nonlinearities are needed or that those 
already applied need to be reassessed.51  Wilks (2006: §6.2.6)12 lays out an approach for 
diagnosing residual plots. 

If the significance test’s p, R2, or residual plot are not satisfactory, review implementation details 
(§ 3.4.3.1) and pitfalls (discussed next, § 3.4.3.3); see also Helsel and Hirsch (2002: §9.5)9 re 
regression diagnostics.  Other caveats in interpreting regression results are given in § 4.4.2 (for the 
case of regressing timeseries of two different variables)52 and § 4.9 for statistical results in general. 
 
3.4.3.3 Pitfalls in linear regression results – 

Before relying on regression results, take into consideration two possible analysis artifacts: (1) 
variance reduction arising from statistical estimation and (2) inconsistencies arising from 
transformations. 
 
Reduction in variance.  A problem stemming from using regression-estimated values in a dataset is 
that these estimates reduce the variance of a timeseries.  This is because the conversion equation 
delivers the best estimate, but without accounting for randomness associated with observation.  
Such reduced variance will cause standard statistical tests you implement in later analyses to 
overstate the significance of your results.  If a fair portion of the data is estimated (from this and 
other preprocessing steps), keep in mind the consequences of this artifact when interpreting your 
final results.  More sophisticated regression methods include an ‘error’ term in equation (1), which 
stochastically adds back in such noise to predicted values. 

 
Transformations and R2.  In regression, transforming the dependent variable y – whether to adjust 
data distributions or to linearize the model – complicates the interpretation of R2.  This is because 
the transformation alters the variance structure of the underlying data, such that R2 becomes the 
variance explained relative to the variance of the transformed y.  As a result, R2’s for regressions 
with linear and different transformations of y are not on comparable scales (Scott and Wild 1991) – 
that is, you cannot judge whether a transformation produced a better regression equation based on 
R2’s.53 

Kvålseth (1985) and Scott and Wild (1991) suggest that regressions with transformed y are best 
evaluated on how well predicted  y' match observed y back in their original scale, rather than by the 
regression R2 in transformed space.  This is done by back-transforming predicted  y' and observed y, 
and regressing (y', y) pairs now in linear space to determine the appropriate R2 – one that relates to 
the original data and is comparable across models.  The resulting overall strategy is then: the best-fit 
regression equation (and its statistical significance, p) is determined in y-transform space, but the R2 
used to evaluate % variance explained is calculated in the original (linear) space.  Willett and Singer 
(1988) discuss this issue with respect to weighted least squares robust regression (WLS, § 3.4.3.1). 

For other scale disconnect issues regarding back transformation of data distribution parameters 
(e.g., mean, SD), see § 4.6.1. 
 

                                                 
51 Helsel and Hirsch (2002: §2.3.3)9 note difficulties in visually judging residual plots for heteroscedasticity, and present 
a smoothing method to avoid these problems. 
52 under: Interpretation of correlation and regression results in § 4.4.2 
53 See also Helsel and Hirsch (2002: §9.6).9  This is an issue only when the dependent variable y is transformed, not if 
just independent x’s are transformed.  
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3.4.4 Known change points.  II: The simple, single station case, without overlapping records – 
Offset and amplitude adjustment 

The regression method is obviously not possible if there are no overlapping records associated with 
a station move or instrument change.  If, on the other hand, there is a relatively clean step change in 
a climate variable with the station change (e.g., Figure 8), then an easy method is to adjust one part 
of the record or the other by such a step offset.33 
 
Mean offset adjustment.  For the case of adjusting the early record (x) to be consistent with the more 
recent record (y), the offset is simply based on the difference in the record’s shortterm means on 
either side of the change point, Δy-x = ( – ).  Each observation in the early record, x(t), is then 
shifted by the offset: 
 

x'(t) = x(t) + Δy-x   , (2)
  
where x' (t) is the adjusted value of the early record consistent with the more recent record y.  The 
means ( , ) should be for a period long enough to represent the two parts of the record, but not so 
long that their difference is affected by decadal shifts in climate regime or longterm trends.   
 
Variance adjustment.  If the variance of the record also changes at the change point, then the early 
record (to continue the case just used) can be amplitude adjusted by the ratio of the standard 
deviations of the two records.  Amplitude adjustment, however, is applied to deviations of the early 
record from its mean, δ x(t) = x(t) – .  This creates an anomaly timeseries. 
 
The amplitude of the anomalies is then adjusted by the ratio of standard deviations after vs. before 
the change point: 

 
δ x'(t) = δ x(t) × (SDy / SDx) 

x'(t) = δ x'(t) +  

(3)a

  b
 

In eq (3a), δ x' (t) is the adjusted anomaly series and SDx and SDy are standard deviations over the 
same shortterm periods used to calculate  and .  The corrected timeseries is constructed from 
anomalies by adding back in the mean:  for the adjusted early record (x') to be fully consistent with 
the recent period, we add in the mean for the recent period,  (eq 3b).  The process of taking out  at 
the start and then adding  at the end incorporates the offset adjustment in eq (2). 
 
Considerations for specific variables – 

Minimum and maximum temperature.  Offset adjustment is often used for temperature series.  
Where both minimum and maximum temperatures (Tmin, Tmax) are being adjusted, the physical 
requirement that Tmin < Tmax can end up being violated when eq (3) is independently applied to 
these linked variables.  A common approach for avoiding this issue is to recombine them into 
the generally independent variables mean temperature (Tmean) and diurnal temperature range 
(DTR = Tmax – Tmin).  We then apply record adjustment techniques to the derived variables, and 
subsequently restore the adjusted timeseries to Tmin and Tmax.54 
 
Precipitation.  Because the frequency distribution of precipitation is highly skewed, a nonlinear 
adjustment is more appropriate.  A simple technique is scaling the earlier record x(t) by the ratio 
of the means: 

                                                 
54 Adjusted records of Tmin and Tmax are reconstructed from Tmean and DTR as:  Tmin = Tmean – ½ DTR, and Tmax = Tmean + 
½ DTR.  Note that, alternatively, DTR and Tmean can be analyzed in place of Tmin and Tmax (§ 4.2.1). 
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x'(t) = x(t) × ( / ) 

 
(4)

In a more generalized approach, we use a nonlinear transform to try to make the precipitation 
frequency distribution function roughly symmetric about the median.   Select the transform – 
such as a log, square root, or cubic root transform – that best suits the data (§ 3.4.3.1: 
Transformations).  Using a natural-log transformation, eq (2) would be:55  

 
ln[x'(t)] = ln[x(t)] + [ln( ) – ln( )]  

     
(5)

 
3.4.5 Known change points.  III: Well-documented instrument changes 

Some instrument changes are so common they have been well studied and correction practices 
recommended in the literature.  Precipitation gauges vary in catch dynamics and their biases, such 
as for wind-driven undercatch of snow, are well documented.  Corrections methods are described by 
Legates (1995) and Yang et al. (2005).56  For NWS co-op station temperatures, a change over in the 
mid-1980’s from liquid-in-glass thermometers to the electronic sensor Maximum/Minimum 
Temperature System (MMTS) introduced a bias in these records (Figure 8).  The bias and its 
adjustment are examined by Quayle et al. (1991; see also Doesken 2005).  Biases due to change in 
time of observation at manual sites are also well documented – this bias and its correction are 
discussed in § 3.3.3. 
 

3.4.6 Seeking and correcting undocumented inhomogeneities – Role of neighboring stations 

Most station changes, however, are not accompanied by overlapping records nor are well 
documented.  In this case, the common method relies on examination of records of nearby stations 
to detect and correct timeseries discontinuities in the station of interest (Karl and Williams 1987, 
Peterson et al. 1998a).57  Such techniques can also be used to guide and confirm correction of 
known heterogeneities (§ 3.4.2– 3.4.5). 
 
The general procedure is: 

(1) Locate potential record shifts using station histories as well as possible (§ 3.4.1) 
(2) Detect and evaluate potential inhomogeneities by comparison to a climate reference 

timeseries 
(3) Adjust the station record if needed, guided by the reference series 

 
A reference series can be based on a single neighboring station or a network of stations strongly 
correlated to the station being evaluated.  For such corrections to be successful, a key criterion for a 
reference series is that it is ‘clean’ (temporally homogeneous) so that changes in its record only 
reflect the climate.  As this is rarely the case, Peterson and Easterling (1994) give a method for 
optimizing the creation of reference series.  Because metadata are often incomplete, Menne and 
Williams (2005) present more sophisticated methods that identify inhomogeneities in records 
without station history guidance.  Enloe (2009) presents an overview of these protocols as used in 
USHCN Version 2.17 

                                                 
55 Note that eq (5) can be re-expressed as:  ln [ x'(t) = x(t) * ( / ) ], which reveals the relationship in eq (4). 
56 Photographs showing the variety of precipitation gauge types: http://www.uaf.edu/water/faculty/yang/bcp/photos.htm.  
Gauge biases are illustrated in online images from Yang et al.: e.g., Northern Hemisphere January measured and 
corrected precipitation: http://www.uaf.edu/water/faculty/yang/bcp/pm_jan.gif and  
http://www.uaf.edu/water/faculty/yang/bcp/pc_jan.gif, respectively. 
57 Another approach uses breakpoint analysis (Haimberger 2007, Christy et al. 2009).  Another application of breakpoint 
analysis is discussed later re regime shifts (§ 4.5.3). 
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Temporal inconsistencies at a station relative to neighboring stations can also be identified and 
corrected with double mass analysis.  This technique plots accumulated station values over time 
against the accumulation for a reliable neighboring station or the average accumulation across a set 
of stations.  The line should be straight with little variation if records are consistent; any breaks in 
slope point to a systematic change in a station’s collection regime (Kohler 1949).58 
 

3.4.7 Station environment changes 

Once non-climatic change points have been accounted for in a dataseries, some local human-
induced gradual changes in climate may still remain, such as from changes in environs.  For 
example, an urban heat island effect is found in timeseries for stations once in rural environs and 
now urbanized.  Accounting for such warming effects is explored by Karl et al. (1988; Figure 9).59  
The climatic effects of other land use change can also be imbedded in the records of stations near 
land converted from, for example, forest to pasture and then to irrigated crops.  Such changes can 
locally affect mean temperature, diurnal temperature range, atmospheric moisture, and precipitation 
– Hale et al. (2006) explores some of these impacts in station records.   
 
If these changes might hamper detecting the signal you’re interested in, it is important to remove or 
at least document these effects.  However, keep in mind that these gradual climate changes are real 
even if they only reflect highly localized effects and not regional dynamics.  Removal is warranted 
only if they interfere with addressing your research questions. 

 
3.5 Concatenating timeseries of nearby stations to extend the record 

To extend a site’s climate history farther back in time than its current record, we can concatenate 
(link) its record with that of an older, similarly behaving station in the region (Figure 6).  Similarly, 
if a station of great value (e.g., because of location and longevity) has been dropped from the 
observation network, we can substitute in an ongoing record from a nearby station.  Concatenation 
can be completed much in the same way as we handle known station discontinuities (§ 3.4.2- 3.4.4). 
 
Generally, first evaluate quality and comparability of the two records.  This entails:  

• Ensuring that both records are temporal homogeneous (§ 3.4)  
• Testing for a strong correlation between stations over a reasonable period of overlap – If 

the overlap is sufficiently long, similarity in station behavior at multiyear and longer 
timescales can be evaluated using spectral analysis (see Figure 6 caption and § 4.5.2). 

Second, concatenate the two series by: 

• Adjusting one of the two series to conform to the other (§ 3.4.2- 3.4.4)  
• Choosing a point to switch from series to the other – This is often broadly based on 

judgment as to which original series is of higher quality and most important to preserve 
and fine tuned so as not to create a local discontinuity at the switch-over point. 

 

                                                 
58 NWS/NOAA user’s guide for a Unix program for double mass analysis provides an overview of the technique: 
http://www.nws.noaa.gov/oh/hrl/idma/html/dma_home_frame.htm 
59 Urban heat island effects are by their nature automatically treated in the scheme of Menne and Williams (2005), 
referred to in the previous section (§ 3.4.6); see Endoe (2009).17 



Development and Analysis of Climate Datasets for Park Science        § 3.6 Page 22

3.6 Missing observations 

When data are missing, three options are: 

(1) Decide its ok to ignore in aggregations (§ 3.6.1) 
(2) In the analysis phase, choose a statistical technique that allows for missing values (such as 

the Mann-Kendall trend test, § 4.3.2) 
(3) Infill them (§ 3.6.2) 

 
3.6.1 Aggregation and missing day tolerances 

If you have daily data and will be analyzing monthly values, missing a few days per month can be 
acceptable.  An approach is to allow some number of days of missing precipitation data (e.g., 3 
days/month) and of missing temperatures (e.g., 5 days/month) for the month to be considered 
complete.  Generally, missing temperature values are of less consequence than missing precipitation 
because a few days of precipitation can account for most of a month’s accumulation.  For some 
climate regimes, such missing-tolerance levels may need to be far lower (e.g., sites prone to rapid 
Arctic frontal passage, summer rain primarily as convective storms) than for others (e.g., maritime 
climates with low day-to-day variability). 
 

3.6.2 Infilling – Initial considerations 

Infilling missing data should be processed last, after data errors, biases, and inhomogeneities are 
taken care of.60  First, evaluate how much of the record is missing – and if these gaps are random 
across the record or temporally biased (discussed earlier, § 3.3.3: Missing observations that are time 
dependent).  It is often sufficient to judge such biasing visually (e.g., Figure 10). 
 
The importance of missing values and temporal biasing depends on analysis requirements.  If you 
plan to use a statistical technique that permits missing data, then infilling may not be needed 
provided that gaps are not huge and their temporal distribution not particularly biased (e.g., Hirsch 
and Slack 1984).  In deciding whether to infill, also consider previously mentioned cautions re the 
effect of estimated data on variance structure (§ 3.3.3, § 3.4.3.3: Reduction in variance). 
 
Also keep in mind you may need to treat missing values differently for different analysis goals.  
Infilled dailies may be required for creating a reliable monthly dataset – e.g., for calculating trends 
or as input to a resource model.  On the other hand, infilled values will interfere with daily 
frequency distribution and extreme value analyses (§ 4.6).  In this case, conflicting requirements can 
be handled using the same dataset for both purposes by flagging infilled data for omission when 
called for (§ 3.2); in other cases, a few versions of the dataset may be called for to meet diverse 
analysis goals. 
 
In the next sections, I present several different infilling approaches – including statistical and non-
statistical spatial models (§ 3.6.3– 3.6.6) and temporal statistical models (§ 3.6.7). 
 

3.6.3 Infilling using a single or few neighboring stations – Simple regression models 

Spatial methods (covered here and § 3.6.4) are powerful techniques for infilling missing values.  
Much like spatial techniques for correcting inhomogeneities, these methods evaluate and utilize 
correlations between a target station (with missing data) and its neighbors.  The most 
                                                 
60 Concatenation (§ 3.5) can be done either before or after infilling.  Concatenating before gives the benefit of having a 
longer record on which to base infilling, but the disadvantage that infilling relationships are based on a derived record 
for part of the period. 
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straightforward technique uses standard linear regression analysis.  In a simple implementation, the 
steps are: 
 

(1) Select candidate nearby stations based on: 

• Proximity 
• Similar environmental controls over climate 
• Completeness of record at times when values are missing at the target station 
• Sufficient record length on which to build a statistically significant regression 

(2) Run separate, simple regressions61 (eq 1; § 3.4.2) of the target record on each candidate 
station record covering a specified period.  The specified period can be defined using 
various criteria – the objective is to optimize the predictive power of the regression model 
for a given situation.  Examples are:  
 

• Use the entire record (all years) for the corresponding season or month (e.g., all daily 
data across all Januaries) 

• Use a moving window about a missing value’s date (such as daily data from 2 weeks 
on both sides of the date for that year) – An advantage of this approach is that the 
regression is tuned to weather conditions happening around the missing date.  Note 
that which neighboring station is selected as the best predictor can change as the 
window is moved to each missing point. 

(3) From these regressions, select the single station with the greatest predictive power (highest 
statistically significant R2).  Follow the guidelines for accepting a regression model laid out 
in § 3.4.3.2. 
 

Refer to caveats and considerations regarding regression-based estimates in § 3.4.3.3 and re spatial 
models in § 3.6.5.  If this method does not produce a workable model, explore using: 
 

• A multivariate regression model – Following the single-station procedure, but with terms 
for additional stations in eq (1).   
o Note: Add in a limited number of other stations only to the extent that R2 is 

significantly improved.  Models with too many predictor terms, each adding small 
improvements in R2, are prone to being ‘overfit’ (where noise is being modeled as if it 
was true signal) giving false confidence in the model’s predictive power.  

• Spatial autocorrelation models – § 3.6.4 
• Alternative, non-statistical spatial schemes – § 3.6.6 
• Temporal models – § 3.6.7 

 
3.6.4 Spatial autocorrelation models 

More sophisticated infilling techniques involve modeling a correlation surface through space and 
using this surface for prediction at a point – the target station.  The spatial autocorrelation surface is 
created based on a relatively large network of stations (e.g., 10-100 stations) that are locally well 
correlated with the target station.  Geostatistical techniques include kriging (Haas 1995) and thin-
plate spline prediction models (Hutchinson 1995, 2004); the development and evaluation of a 
kriging model is illustrated in Figure 11 and Figure 12 (discussed in the next section, § 3.6.5).  A 
classic reference for spatial statistics is Cressie (1993a).62   

                                                 
61 Simple regression is with only one independent variable, x (in this case, a neighboring station), in comparison to 
multiple regression with two or more independent variables. 
62 Another text is Clark and Harper (2000); the 1979 edition (by Clark) is online at: http://www.kriging.com/PG1979/ 
(as pdf: http://www.kriging.com/PG1979/PG1979_pdf.html).  
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In applying these methods, it is usually more effective to work with anomaly (means removed) or 
standardized anomaly fields (anomaly divided by standard deviations) than with original values.63  
This is because temperature and precipitation anomalies tend to be regional in scope and so more 
spatially coherent than original fields.  Additional techniques simultaneously evaluate spatial and 
temporal autocorrelation to infill missing data (e.g., Kondrashov and Ghil 2006, 2007).64   
Interpretation of spatial autocorrelation analyses is also discussed in § 4.7.2. 
 

3.6.5 Considerations in implementing spatial statistical infilling models 

The value of spatial statistical models (§ 3.6.3– 3.6.4) is that they permit a statistical evaluation of the 
process – to be able to say how good a technique is in terms of the strength and significance of 
relationships used to build the infilling model.  The following considerations will help design a 
successful protocol, while recognizing model limitations: 

Spatial heterogeneity.  As noted earlier (§ 3.3.2: Spatial consistency), spatial predictive power 
drops off with distance as a function of climate variable, time aggregation interval, and 
heterogeneity in climate-controlling factors.  The effect of climate heterogeneity on a spatial 
model is shown in Figure 11 – while this illustration is for a kriging model, the issue pertains 
just as well to simple regression schemes. 

Because of heterogeneity in climate-controlling factors, the best predictor may not be the closest 
station.  Consider a number of neighboring stations as candidates for simple regression models 
(as in the implementation strategy in § 3.6.3).  One approach is to stratify a regional domain by 
controlling factors (e.g., topography) and look for stations in a stratum matching the target 
station (this is the approach in PRISM: Daly et al. 2002, 2008). 

Correlations dynamic.  Spatial correlations among stations are dynamic, e.g., with strong 
seasonal dependence.  Allow for station selection and regression models in your protocol to vary 
at least on a monthly basis or with a moving window. 

Timestep choice.  Infilling can be applied at different timesteps with varying results (Figure 13).  
As noted (§ 3.3.2: Spatial consistency), spatial correlations are smoother at longer timesteps.  
However, if, for example, daily missing values are relatively limited in number and scattered 
(rather than forming long gaps), a better monthly record may be obtained infilling at the daily 
scale because more of the original record is retained (see Figure 13 caption). 

It is best not to use regressions based on monthlies to infill daily values – monthly regressions 
will not properly capture daily variability. 

Station density effects.  Station density has a direct effect on how well we can model spatial 
relationships.  For the kriging model discussed in Figure 11, model error is larger during periods 
of low station density (Figure 12a, b).  A consequence of this is that as station density drops off, 
interannual variability is artificially diminished.  This is because with lower station density, the 
scheme reaches farther out to less well correlated stations, so that poorly related signals are 
blended to create the infilled record (Figure 12c vs. d).  This variance loss can be accounted for 
by adding a stochastic term into the spatial model (Cressie 1993b). 

 

                                                 
63 Following the notation in § 3.4.4, the anomaly series δ x(t) = [x(t) – ] and the standardized anomaly = [δ x(t) / SDx ]. 
64 Advanced methods for spatial and spatiotemporal data are covered in Banerjee et al. (2003). 
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3.6.6 Alternate methods – When regression techniques do not work 

Regressions can fail for stations where proximity and similarity in climate otherwise suggest they 
should work.  Reasons for such failure include: 
 

• Period of overlap between target and nearby station is too short on which to base a 
reliable regression relationship 

• While both stations have comparable climate dynamics, daily events or even weekly 
values are not in phase over moderate spatial scales – e.g., under convective precipitation 
regimes. 

 
The following alternate techniques, while practiced, are only advised in the case when statistical 
methods have failed.  Generally speaking, this is because they are not statistically testable and 
because they can introduce undesirable features into data timeseries.     

Longterm mean substitution.  Insert the longterm (or some other period) day-of-the-year or 
monthly mean for missing days.  Undesired effects are that (i) this technique under-represents 
temporal variability and (ii), for precipitation, it inserts spurious precipitation events into the 
record.65 

Neighbor substitution.  Insert the day’s value from a neighboring station (or grid point) with 
offset or amplitude adjustment (§ 3.4.4).  An advantage is that this process maintains some 
variability in the record based on the dynamics of a nearby station.  A disadvantage is that there 
is no test as to whether the variability at the nearby station or grid point is related to that of the 
target station.  In practice, this means that strong justification of station selection (or gridded 
dataset) is needed.  Baron (2006) used this method to scale a gridded dataset’s grid point 
timeseries to a station. 

Distance-related interpolation.  Use an inverse-distance (or other distance-dependent) 
interpolation of values from multiple neighboring stations (Wilmot et al. 1985, Chen et al. 
2008).  These spatial methods are distance-weighted in contrast to the previously presented 
statistical spatial models which are correlation-optimized.  An undesirable effect is that this 
technique blends signals of the nearest stations – if these signals are not in phase, the result is a 
dampened signal. 

A variant of the distance-based scheme is to interpolate station anomalies (as suggested for 
statistical spatial models, § 3.6.4).  One implementation is to use a variance-scaled anomaly 
(standardized anomaly):63 

 
δ(t) =  〈 INTERPOLATION (i=1,n) { [x(t,i) –  (i)] / SDx(i)} 〉 

y'(t) =  + [ δ(t) × SDy ] 

(6)a 

b

where δ(t) is an interpolated standard deviation-normalized anomaly at time (t), derived from 
x(t,i), (i), and SDx(i) which are observations, mean, and standard deviation for each of the i=1,n 
number of neighboring stations used in the interpolation.66  In eq (6b):  y'(t), , and SDy are the 
target station’s infilled value at time (t), mean, and standard deviation, respectively.  This 
technique adjusts for signal mean level and variance difference not accounted for in the basic 
distance interpolation scheme; however, signals still have the potential for being smoothed. 

 
                                                 
65 By using a mean value, an artificial, low magnitude ‘event’ is inserted in the record regardless of the synoptic weather 
conditions at the time – such as in the middle of a dry spell. 
66 The INTERPOLATION function can be any distance-related or other reasonable spatial interpolation scheme. 
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3.6.7 Temporal models – Serial correlation simulation 

Data simulation based in temporal autocorrelation is an alternate, statistical technique.  If a station’s 
serial correlation is high, a temporal autoregressive (AR) model can be created to infill data using 
values in a station record on either side of missing points.67  Regression terms in an AR model are 
observations at lag/lead times – most of the power in AR models tend to be at a lag/lead of 1 
timestep so that a first-order model is sufficient.  This approach can be valuable when there are no 
surrounding stations on which to base spatial methods as it uses only the target station’s record.  
The disadvantage of this technique is that while it infills a record with an event structure that is 
characteristic of the station, the estimated values are synthetic (the values do not reflect actual 
events).  Techniques that combine temporal and spatial correlations are mentioned at the end of 
§ 3.6.4. 
 
More advanced versions of these models look for correlations with other variables at a station to 
guide this infilling.  While used in other contexts, WGEN (Richardson 1981, Parlange and Katz 
2000) is a temporal model that uses daily autocorrelation and cross-correlation68 to stochastically 
simulate daily minimum and maximum temperatures and transition probabilities to model 
precipitation events.69   

 
3.7 Document data changes and evaluate consequences 

When you have a processed dataset ready to address your research questions, finalize the 
documentation of your data protocol.  Layout your data clean-up methods, catalog dataset versions, 
record flag coding for adjusted, infilled, or omitted data (§ 3.2), and report tests that support your 
choice of methods.  It is crucial to state assumptions, limitations, and caveats that accompany the 
techniques applied.70  As mentioned earlier, keep in mind that estimated fields can in some cases 
artificially reduce variance in the data and lead to an overstatement of significance in statistical 
tests.  Such frank discussion will be an important reference for others using the dataset, but also for 
you in interpreting your analyses.  Do not neglect the documentation process. 
 
Evaluate the effect of data adjustments and infilling as they carry into the statistical analysis phase 
(§ 4.0).  Run different levels of unmodified and corrected data through to see how critical your 
decisions were, how robust your analysis results are.  Be convinced that your data preprocessing 
choices had effects you are comfortable with.  As part of documentation, do not neglect the 
evaluation process. 
 
 
4.0 Analysis – Tools to Explore Critical Questions 

With a credible, well-documented dataset tailored to planned analyses, you can pursue two 
complementary lines of study:  discovery and hypothesis testing (Figure 1c).  Discovery is aided by 
visualization and descriptive statistics, which help to develop an intuitive sense of the data, generate 
new hypotheses, and relate information to others.  Hypothesis evaluation advances, with 
confidence, our understanding of a system and is accomplished through rigorous statistical tests. 
                                                 
67 Wilks (2006: §8.3.1)12 discusses temporal autoregression and AR models. 
68 Serial correlation (autocorrelation) is the lead-lag correlation for a single variable and cross-correlation lag-lead 
between variables. 
69 WGEN is designed to generate synthetic month-long and longer daily time series using a first-order Markov chain-
exponential model for precipitation and a first-order autoregressive model for daily temperature that was conditional on 
precipitation. (Figure 18 shows the frequency distribution of WGEN-simulated dailies compared to station records) 
70 For one approach, see Kittel et al. (2004: §7.1)’s caveats. 
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Both discovery and hypothesis testing are components of analyses commonly applied to climate 
data, reviewed in the following sections.  After discussing descriptive methods (§ 4.1), I introduce 
common derived variables that can help in such exploration (§ 4.2) and present temporal and spatial 
analytical techniques.  Temporal analyses include those for: 

• Longterm trends (§ 4.3) 
• Covariation among timeseries (§ 4.4) 
• Interannual variability and regime shifts (§ 4.5) 
• Daily event structure and extremes (§ 4.6) 

And spatial analyses for: 

• Regional coherence (§ 4.7) 
• Hemispheric teleconnections (§ 4.8) 

 
I end with caveats re interpretation (§ 4.9) and a summary of key lessons for dataset creation and 
analysis (§ 5.0). 
 
4.1 Description 

Before proceeding with statistical tests, take advantage of descriptive methods to understand your 
data and visually explore your ideas.  This process can reveal problems not already caught in dataset 
development (§ 3.0) and suggest the best analytical approach for testing your a priori hypothesized 
relationships (§ 2.0).   
 

4.1.1 Descriptive statistics 

Key descriptive statistics are: 

• Data distribution parameters – e.g., mean, SD, quartiles, skewness, outliers 

• For monitoring, diagnostic measures of recent observations relative to the historical 
record – e.g., departures from longterm mean, historical rank for extreme events.  
Departures can be expressed in original units, percentiles, or standard deviations. 

 
4.1.2 Graphic methods 

Helsel and Hirsch (2002: Chapters 1 and 2)9 and Wilks (2006: Chapter 3)12 present a wide variety of 
quantitative and graphic exploratory methods tailored to different discovery objectives.  I list 
common graphic methods here, given by visualization goal and with examples from figures in 
upcoming sections (§ 4.3- 4.8): 

 
Data distribution (Univariate) – 

• Histograms – to show the frequency distribution of a variable across: 
o Its own data range (e.g., Figure 17a,c) 
o Range of a second variable influencing the first’s occurrence (e.g., by month: Figure 17b) 

• Cumulative distribution graphs – to compare data distribution patterns of 
o Two datasets (Figure 20c) 
o A dataset vs. a hypothesized distribution 

• Box-and-whisker plots (§ 4.6.1) –  
o To display data distribution features such as median, quartiles, outliers (Figure 18) 
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o Using multiple plots, to compare these features for different sites (Figure 18), seasons 
(Toews et al. 2007), or decades or by any other discriminating attribute influencing the 
variable’s frequency distribution. 

 
Multivariate: Relationships with other system variables – 

• x-y scatter plots – to explore: 
o How two variables co-vary 
o How data from different categories of observations (different regions, seasons, etc.) 

break out in x-y space (e.g., with data domains delineated as in the style of Figure 
2d).71  

 
Temporal dynamics: To explore trends and interannual variability patterns – 

• Timeseries plots – with values plotted on an absolute scale (Figure 15a) or as deviations 
from the longterm mean (Figure 15c), with or without smoothing (§ 4.5.1). 

• Complemented by plots in the frequency domain (§ 4.4.1) to indicate periodic behavior 
(Figure 16a, Figure 22). 

 
Spatial display: To explore geographic relationships – 

• Mapped variable fields – a variable’s distribution in space revealing gradients or distinct 
domains, such as with contoured fields (Figure 19c) or symbols (arrows in Figure 23a).  
Maps can be in absolute values or as anomalies from a spatial mean (e.g., contours and 
arrows in Figure 23a). 

• Correlation maps – mapping temporal correlations of a spatially-distributed variable (such 
as temperature timeseries) with another, single timeseries. 
o The single series can be of the same variable at one key location – to illustrate spatial 

autocorrelation (§ 4.7.2; Figure 21a). 
o Alternatively, the single series can be of a second variable – to show their cross-

correlation, such as with a hemispheric circulation index illustrating teleconnections 
(§ 4.8.2; Figure 24a). 

 
Space-time: Evolution of spatial patterns with time – 

• Animations – to display a time sequence of maps 
• Time-longitude/Time-latitude section plots – two-dimensional display of spatiotemporal 

data, where one spatial dimension is collapsed by averaging (e.g., Figure 14).72 
 
                                                 
71 See also “polar smooth plots” in Helsel and Hirsch (2002: §2.3.2, Figure 2.28).9 
72 In addition to animations, another means to display the evolution of spatial processes with time are time-longitude and 
time-latitude section plots (also known in meteorological applications as Hovmöller diagrams).  In this method, three-
dimensional spatiotemporal data – two dimensions in space (e.g., latitude by longitude) and the third in time – are 
represented in 2-D by collapsing one of the spatial dimensions into an average.  These plots cross-section the data by 
time and one spatial dimension, and so reveal how a variable’s spatial pattern evolves over time along a longitude or 
latitude transect: 

• In a time-longitude section plot, averages over a latitudinal range are calculated by each longitude position and 
timestep, and then presented as a contour plot with longitude on the x-axis and time on the y.  This shows how a 
variable generalized for a latitude range changes with time and longitude (e.g., Figure 14). 

• In a time-latitude plot, longitude averages are contoured on a plot with time on the x-axis and latitude on the y. 
In sector plots, spatial dimensions need not be latitude/longitude.  A method is at 
http://locust.mmm.ucar.edu/episodes/episodes_paper_technote.html#_Toc516370405 – their technique is highly 
detailed, specific to their data, but the figures illustrate the process.  For additional examples, see the interactive site for 
tropical climate variables: http://www.pmel.noaa.gov/tao/jsdisplay/.   
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4.2 Insights through derived variables 

Analysis of composite and other derived variables can provide additional insights into site climates 
in terms of their thermal and drought regimes. 
 

4.2.1 Thermal regime measures 

Three commonly derived thermal variables are: 

Diurnal temperature range (DTR).  Diurnally, minimum and maximum temperatures (Tmin, 
Tmax) are strongly controlled by different local processes, those affecting daytime heating vs. 
nighttime cooling.  However, day to day, they tend to be correlated because of multiday- to 
month-timescale effects – e.g., air mass advection and seasonal heat storage.  This high 
correlation tends to obscure differences in Tmin and Tmax dynamics.  On the other hand, DTR and 
mean temperature (Tmean)73 are generally orthogonal74 and can be used to segregate processes 
controlling a climate’s thermal regime – with Tmean showing multiday synoptic and seasonal 
effects and DTR the daily offsetting of local heating and cooling.   

In terms of observed climatic trends, Tmin and Tmax have been changing at different rates over 
the recent record.  We see that minima are often rising more strongly than maxima, so that DTR 
has narrowed with time (Easterling et al. 1997).  DTR is a simple index of this change. 
 
Accumulated growing degree days (AGDD).  Accumulated growing degree days is a frequent 
measure of growing season conditions.  By ‘growing season,’ we are generally referring to 
terrestrial plant phenology, but recognize that other groups of organisms have their own 
environmental cues.  AGDD is the sum of mean daily temperatures that exceed a critical base 
temperature.  Base temperatures (Tbase) are set depending on application or ecosystem.  A Tbase 
of 5ºC has been used in general applications for temperate natural systems (e.g., Rehfeldt et al. 
2006).  However, where literature can support it, the limit should be one fitting the ecosystem or 
organisms studied.  In montane and alpine environments, for example, 0ºC is considered a lower 
limit for plant growth (Billings and Bliss 1959, Kimball et al. 1973).  The formula is:   

AGDD = Σ[Tmean(t) – Tbase], for days (t) when Tmean(t) > Tbase , 
 

(7)

summed over a year, and where Tmean(t) is the average of daily minimum and maximum 
temperatures for day (t).   
 
Frost-free period timing and length.  The frost-free period is another indicator of growing 
season conditions.  We can ask not only how the length of frost-free period changes year to 
year, but also about spring onset and fall termination date changes – as shifts in these two dates 
are not necessarily linked.  Different ecosystems (and their different components) have different 
sensitivities to freezing temperatures – so we can use different cold temperature thresholds, 
Tfreeze, depending on the application.  A natural threshold for Tfreeze is 0ºC, but a lower threshold 
such as –2 or –3ºC can be used to represent a ‘hard’ frost.75  Example seasonal markers for 
spring and fall dates are: 

                                                 
73 Both calculated from Tmin and Tmax: DTR = (Tmax – Tmin) and, of course, Tmean = (Tmax + Tmin)/2.  DTR was discussed 
earlier in the context correcting station records (§ 3.4.4: Considerations for specific variables). 
74 I.e., independent.  This is generally speaking the case for Tmean and DTR at daily timescales; on the other hand, DTR 
can vary seasonally with Tmean and regionally, for example, maritime areas with low seasonality in Tmean tend also to 
have low DTR compared to continental climates. 
75 Note that many poikilotherms and plants (once hardening has begun) are not susceptible to freezing at temperatures a 
few degrees below 0ºC because of tissue solute levels and physiological adaptations (cf. Marchand 1996). 
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• Last and first frost at night – based on Tmin ≤ Tfreeze 
• Last and first day with freezing daytime temperatures – based on Tmax ≤ Tfreeze 
• Last and first run of, for example, 3 days with nighttime frost – based on Tmin ≤ Tfreeze 

 
4.2.2 Drought indices 

The purpose of drought indices is to capture the occurrence and duration of wet and dry spells.  
Heim (2002) reviews commonly applied drought indices; two well-known ones are: 

Palmer Drought Severity Index (PDSI).  The Palmer Drought Severity Index is a standardized 
measure of soil moisture supply, typically evaluated on a monthly basis (Palmer 1965).76  PDSI 
is a common metric for determining when a dry or wet spell begins and ends, integrating the 
effects of both precipitation and temperature (through its control over evaporative demand) on 
surface water balance (e.g., Figure 14).  While reported for a given point in time, the index 
includes antecedent soil moisture conditions and so reflects the accumulative effects of water 
deficit or surplus.  Alley (1984) presents a method for calculating monthly PDSI based on 
monthly precipitation and temperature data. 

While PDSI’s soil water budget allows it to integrate effects of temperature and precipitation 
and to accumulate moisture deficits or surpluses, key limitations come from the budget’s 
shortcomings.  These include (1) difficulty in applying it over terrain with heterogeneous soils 
and topography and (2) its lack of runoff generation lags, of snow and frozen-ground lag effects, 
and of seasonally in the role of vegetation (Alley 1984, Heim 2002).  Relative to SPI (discussed 
next), PDSI may be slow to identify an emerging drought and may underrate the magnitude of 
prolonged drought (Karl and Knight 1985).  Heim (2002) further explores the utility and 
limitations of PDSI.  

Standardized Precipitation Index (SPI).  The Standardized Precipitation Index focuses solely on 
the precipitation component of drought and wet periods (McKee et al. 1993, Guttman 1999).  
SPI is positive for wet conditions, negative for dry.  To give temporal context to current drought 
or water surplus conditions, the index is determined for retrospective timescales from most 
immediate (proximate month and season) to sustained (multiyear) durations (Heim 2002).77  SPI 
compares the current period’s cumulative precipitation to the historical probability of reaching 
that amount of precipitation.78  The SPI is the number of standard deviations that current 
precipitation totals are away from the historic median.  The probabilities can be easily backed 
out of SPI using rules for normal distributions, e.g., ±2 SD correspond to roughly to the 2nd and 
98th  percentiles, respectively – so SPI values of –2 and +2 represent extreme dry and wet 

                                                 
76 A global, coarse-resolution PDSI dataset is available at: http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html . 
77 Current SPI maps for the conterminous U.S. (by Climate Division) for 1- to 72-month durations are at: 
http://www.wrcc.dri.edu/spi/spi.html; see also: http://lwf.ncdc.noaa.gov/oa/climate/research/prelim/drought/spi.html.  A 
historical, global gridded SPI data viewer is at: 
http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.Analyses/.SPI/SOURCES/.IRI/.Analyses/.SPI/SOURCES/.IRI/.Analyses
/.SPI/SOURCES/.IRI/.Analyses/.SPI/html+viewer? – zoomable, interactive. 
78 This probability is taken from the cumulative distribution function (CDF) for the location’s precipitation record.  This 
function is derived (accumulated) from a gamma probability density function (PDF) fitted to monthly precipitation data.  
(A gamma distribution is often a good portrayal of precipitation data.)  The relationship between cumulative and 
probability density functions is illustrated in Figure 20a; see also § 4.6.3.  An inverse-normal transform of the gamma-
derived CDF nicely puts these probabilities in terms of standard deviations of a normal distribution – the value of SPI is 
the number of standard deviations from the longterm median precipitation 
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conditions relative to the historical record for that site and timescale.79  Guttmann (1999) lays 
out the calculation method.80 

Benefits of SPI include: (1) that it is relatively straightforward to calculate (requiring only 
precipitation records and no site attributes), (2) its short to longterm perspectives on current 
drought conditions, and (3) advantages over PDSI noted earlier.  However, a key limitation is 
that it only evaluates the role of precipitation anomalies in the occurrence and intensity of 
drought, while temperature anomalies can be an equally strong contributing factor (Hu and 
Willson 2000). 
 

4.3 Trend analysis 

4.3.1 Regression analysis 

A method for statistical evaluation of trends in climate and other environmental variables is 
regression analysis.8  Regression trend analysis applies eq (1) with x(t) now representing time t 
itself:   

y'(t) = b0 + b1 t (8)

where the regression slope, b1, is the calculated trend and y'(t) traces the variable’s change due to 
the longterm trend alone. 
 
Regression model assumptions.  While regression is frequently used to study trends, it is not always 
an appropriate method.  Referring back to earlier discussion re regression (§ 3.4.3.1), the standard 
implementation (OLS), while powerful, requires that observed data are independent (discussed 
shortly) and their distribution normal and homoscedastic (variance constant).38  As noted 
previously, climate data do not always meet these criteria.  Transformations to adjust data to 
normality and constant variance are noted in § 3.4.3.1, along with corresponding issues.   
 
If the two distribution assumptions are violated (even after transformation), use a robust technique – 

• If non-normal – use a non-parametric method, such as Mann-Kendall test for trends (next 
section, § 4.3.2) 

• If normal, yet heteroscedastic – use a robust regression which models the changes in 
variance, such as WLS regression (§ 3.4.3.1)40 and quantile regression (§ 4.3.3). 

 
Adjusting for serial correlation.  In timeseries, independence means that the observations are not 
serially correlated (no temporal autocorrelation).  However, it is not unusual for geophysical data to 
be serially correlated.  Needless to say, these assumptions are often ignored and regression trend 
statistics commonly reported in studies.  A test for serial correlation is the Durbin-Watson test, 
which is applied to the detrended series81 (Wilks 2006: p. 192; Helsel and Hirsch 2002: §9.5.4.1). 
 

                                                 
79 As noted in footnote 78, the probabilities behind the SPI are transformed to a normal distribution.  Conversions from 
standard deviations (and so, SPI) to percentiles are based on one-tailed probabilities.  Other rough conversions are:  ±1 
SD = 16th and 84th percentiles, ±1.6 SD = 5th and 95th percentiles, ±2.3 SD = 1st and 99th percentiles, ±3 SD = 0.1th and 
99.9th percentiles (see also Guttmann 1999).  Note that distribution function fitting does not always do well at extreme 
tails of a distribution, so there is high uncertainty in extreme SPI values.  (See related discussion: 
http://www.cpc.noaa.gov/pacdir/NFORdir/INTR.html – “Caution Required for the Tails of the Curves”.) 
80 PACN (2008) gives a procedure for calculating SPI in Excel.  Inclusion here is not an endorsement – before using, 
validate output against results from other methods. 
81 A detrended timeseries is usually calculated as the residuals from linear regression (trends) analysis. 
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If serial correlation is significant and the correlation is positive at a timestep lag of minus 1 (r1), 
then its effect can be accounted for in trend analysis by inflating the regression’s mean sum of 
squares for error (MSE).  This appropriately makes the regression’s significance test more 
conservative.  The inflation factor increases with r1, such that: 

MSE*= MSE [(1 + r1) / (1 – r1)]  , 
 

(9)

where  MSE* is the serial-correlation adjusted value of MSE (Wilks 2006: p. 194).  From the 
adjusted MSE*, recalculate R2, F-test statistic, and significance level p. 82 
 

4.3.2 Mann-Kendall trend test 

The Mann-Kendall test for trends is a non-parametric method using ranked data.  Advantages of this 
test are that it: 

• Does not require normally-distributed observations 
• Allows for missing data 
• Is resistant to the effect of outliers 
• Detects monotonic rather than strictly linear trends – with the added benefit of eliminating 

the need for nonlinear transforms 
• Is often just as powerful as corresponding parametric tests such as regression (Lettenmaier 

et al. 1994) 
 
While normality is not needed, constant spread in the data’s distribution (homoscedasticity) is.  
However, with this relaxed set of requirements, workable transformations are more readily achieved 
than under the more restrictive assumptions of ordinary least squares regression.83  In the Mann-
Kendall test, climate observations are converted to ranks and the ranked correlation (climate rank 
vs. time) is tested with Kendall’s tau statistic (Helsel and Hirsch 2002: §8.2, §12.2.1).9  Hirsch and 
Slack (1984) give a method accounting for seasonal dependence in trends. 
 
Because observations are ranked, this technique tests for monotonic trends (as already noted) – with 
the advantage of not needing to specify a linear or nonlinear model,84 but with a notable 
disadvantage of not quantifying that trend.  Hirsch et al. (1982) present a slope estimator, Kendall-
Theil robust line, to accompany Mann-Kendall tests.85  An alternative strategy is to use (1) the 
Mann-Kendall test for statistical assessment and (2) linear regression (with or without nonlinear 

                                                 
82 To calculate the serial-correlation adjusted R2* and F*: 

• Back out the error sum of squares (SSE) and total sum of squares (SST) from adjusted MSE* using the definitions: 
o MSE* = SSE*/(n-2)   → SSE* = MSE* (n-2) 
o SST* = SSR + SSE* 

where * indicates an adjusted parameter, n = number of observations, and SSR is the sum of squares for regression 
obtained from the un-adjusted regression analysis. 

• Recalculate R2* and F*, get new p 
o R2* = 1 – (SSE*/SST*) 

o F* = MSR/MSE* 

o Determine the p from F* and degrees of freedom for MSR (df=1) and MSE (df=n-2) [or compare F* to 
Fcritical(α)] 

where MSR is the mean sum of squares for regression also obtained from the un-adjusted regression analysis. 
83 If corrected by a power transform, the Mann-Kendall test statistic tau (discussed next) is variable-scale independent – 
that is, not affected by the transform and so is comparable across tests on original and variously transformed data 
(Helsel and Hirsch 2002: §12.2.1)9 in contrast to scale-dependence in R2 (§ 3.4.3.3: Transformations and R2). 
84 vs. for regression techniques, § 3.4.3.1 
85 See Helsel and Hirsch (2002: §10.1)9 re the Kendall-Theil robust line 
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transformations) to describe the trend.86,87 
 
Accounting for serial correlation.  A concern in applying Mann-Kendall is, like parametric tests, 
that it assumes independent observations.  In evaluating this issue, Harcum et al. (1992) found that 
the test considerably overstated a trend’s significance level when the detrended serial correlation at 
1-year lag had a correlation coefficient r1 > +0.2.  They concluded that for r1 < +0.1, the test was 
rigorous, with a grey area between +0.1 and +0.2.(88)  Evaluate this issue by (1) detrending the 
series81 and (2) calculating the lag-correlation between this series and itself offset by one timestep.  
Kulkarni and von Stroch (1995) and Hamed and Rao (1998) offer methods for handling serial 
correlation in the Mann-Kendall test. 
 

4.3.3 Quantile regression – Tracking heteroscedasticity 

So what if a process is heteroscedastic with time – that the variance and other moments have trends?  
If we can see how a process varies over time in a manner far more complicated than just a changing  
mean, we gain deeper insights into how the system is actually working (Cade and Noon 2003,  
Beniston and Stephenson 2004).  While standard regression considers the tendency of the mean,  
quantile regression follows the trends of quantiles (percentiles) of a variable’s distribution  
evaluated for intervals along the time axis.  It allows us to simultaneously track any part of the  
distribution, such as the median (50%-tile) and top vs. bottom 10%-tiles.  The approach is robust as 
it models heteroscedasticity and has low sensitivity to outliers (Hao and Naiman 2007).  Cade and 
Noon (2003) present examples of quantile regression from ecology.  General references are 
Koenker (2005) and Hao and Naiman (2007).89 
 
4.4 Covariation among variables 

4.4.1 Relationships in time and frequency domains 

If two variables both vary in time, we can ask whether they co-vary in a manner that implies cause 
and effect (regression) or coordination (correlation).  In park applications, these variables may be 
both climatic or one that is resource related, following research questions.  Parametric and non-
parametric regression methods just noted for trend analysis, and corresponding correlation 
techniques, can similarly be employed to compare two such timeseries: x(t) vs. y(t).  For example: 

• For regression –  
o OLS and WLS regression (§ 3.4.3.1, § 4.3.1) 
o Kendall-Theil robust line (§ 4.3.2)  
o Quantile regression (§ 4.3.3) 

• For correlation90 –  
o Pearson’s r  
o Rank correlation methods: Kendall’s tau, Spearman’s rho 

                                                 
86 In this approach, it is important to distinguish the roles of these two analyses when reporting results.  While the 
Mann-Kendall test evaluates the statistical significance of an observed trend, it does not similarly assess the regression’s 
quantification of the trend.   
87 Helsel and Hirsch (2002: §10.1.2)9 compare Kendall-Theil robust line and ordinary least squares regression slope 
approaches. 
88 For the mirrored case where r1 < –0.2, autocorrelation leads to an understatement of statistical significance (Hamed 
and Rao 1998). 
89 Koenker created an R-package for quantile regression: http://cran.r-project.org/web/packages/quantreg/index.html 
(http://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf).   Koenker (2005) and Hao and Naiman (2007) are
available in part on Google Books (see References).   
90 See Helsel and Hirsch (2002: Chapter 8 – Correlation)9  
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Processes that vary in time lend themselves to additional questions and corresponding techniques: 

• Cross-correlation and Multi-lag regression – To test for a lag or lead of one variable’s 
dynamics relative to the other.68,91,92 

• Cross-spectra – In addition to evaluating relationships in the time domain (as in methods 
just covered), we can ask how correlation is structured in the frequency domain.93  
Specifically, is their correlation (spectral coherence) concentrated in certain frequency 
ranges?  And are their dynamics in these frequencies in phase, or do they lag/lead?  Cross-
spectral techniques are presented in § 4.7.3, in the context of comparing station records of 
the same variable. 

 
4.4.2 Cautions regarding timeseries comparisons 

In addition to taking care to adhere to these tests’ assumptions (re data distribution, serial 
correlation, etc.) and regression implementation and interpretation guidelines presented earlier 
(§ 3.4.3), take note of the following cautions for timeseries comparisons: 

Smoothed dataseries.  Smoothing timeseries underrepresents observed variance (lost in temporal 
averaging) and increases serial correlation (information is blended among adjacent time points).  
Both effects compromise statistical analysis – they increase the risk of overstating significance 
in statistical tests (Type I error).24  Consequently, smoothed data should be strictly avoided in 
statistical comparisons (discussed further in § 4.5.1: Additional cautions).  

If timesteps do not match.  Trying to compare timeseries with differing timesteps can be 
troublesome.  Some points: 

• The high-frequency variance of a short-stepped timeseries is missing in long timestep 
data, and so cannot contribute to shared variance in correlation or explained variance in 
regression.  Instead, this variance ends up in the error term, reducing the power of these 
tests. 

• There are various approaches to force timesteps to match.  If the longer timestep series is 
interpolated to the shorter step, the resulting series becomes strongly serially correlated 
(information is repeated at the more frequent time points) and the apparent number of 
observations (and so degrees of freedom) becomes inflated.  If unaccounted for, these 
effects increase the likelihood of a Type I error (overstating significance). 

• The more common approach is to rescale short timestep data to the longer step, such as 
through aggregation as by summing or averaging across fixed time-intervals94 (giving, for 
example: AGDD, total annual precipitation, and mean monthly temperature) or binning by 
event categories (e.g., number of extreme cold events in winter).95  If rescaling is done 

                                                 
91 A couple examples of studies using lag-lead cross-correlation between climate and biological variables are:  
Martinez-Yrizar and Sarukhan (1990), Braswell et al. (1997). 
92 Serial correlation in individual timeseries also interferes with cross-correlation tests.  As an alternate approach to 
cross-correlation, Burnaby (1953) presented a test for comparing timeseries that are autocorrelated.  Malmgren et al. 
(1998) used this technique to evaluate teleconnections. 
93 In the time domain, variables are paired by time index: y(t) vs. x(t).  In the frequency domain, they are indexed along 
a range of possible oscillation frequencies, f:  y(f) vs. x(f).  In spectral techniques, f is generally treated as a narrow 
frequency band, rather than a single frequency.  Univariate spectral analysis is presented in § 4.5.2, bivariate (cross-
spectral) analysis in § 4.7.3. 
94 As distinguished from running averages, which constitutes smoothing. 
95 As another example, the Climate Extremes Index (Gleason et al. 2008) uses a season-aggregate index of extreme 
events (Figure 15a). 
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through smoothing, however, issues discussed above arise.  With aggregation, keep in 
mind there is a loss of shorter-term information – a concern if scale interaction plays a 
role in the processes being compared (a topic covered shortly: Process timescales differ). 

Processes out of phase.  If one process has a lagged effect on the other, standard correlation and 
regression techniques are likely to miss or underestimate a relationship.  Cross-correlation and 
multi-lag regression (as just noted, § 4.4.1) can be used to explore this possibility. 

Process timescales differ.  Regression and correlation analyses are straightforward when the 
temporal scales of processes of interest reasonably match.96  On the other hand, in looking for 
relationships between a slow-moving process and a fast one, the mismatch in scale complicates 
matters.  This is because (1) processes may only interact in a narrow, shared range of 
frequencies or (2) they interact across scales (§ 2.2: Scale interactions).  The three modes by 
which slow and fast-moving processes interact and corresponding analysis options are: 

• Mode 1: Processes interact only at shared frequencies.  Cross-spectral analysis (§ 4.7.3) 
can be used to show at what frequencies two processes correlate well and if this coherence 
is in phase or lagged.  Note that coherence and phase do not prove there’s a physical link 
between the two processes, but can be the basis for hypothesizing mechanisms.  

• Mode 2: Slow process constrains a fast process.  From the perspective of a fast process, a 
slow process operates between relatively stable states (phases) and potentially constrains 
the dynamics of the fast process.  We can ask if these phases set the stage for the high-
frequency process, resulting in its distinct behavior.  An analysis strategy to assess such 
phase dependence is to: 

(1) Block the slow-moving dataseries into periods when the system is in more or less 
stable phases.97 

(2) Contrast behavior of the fast process under the different blocks of the slow process.  
This can be evaluated using analysis of variance (ANOVA) or other parametric and 
non-parametric techniques to test whether a significant part of faster process’s 
variance is explained by the slow process’s phases.98   

• Mode 3: Fast process determines the state of a slow process.  Critical, threshold events in 
a fast process (e.g., extreme weather events) may control the outcome of a longer-acting 
process.  The trick in this type of analysis is to select the appropriate fine-scale variable, 
such as crisis weather events – this selection is aided by having detailed knowledge of the 
system.  For example, in an ungulate demographic study, Hallett et al. (2004) evaluated 
the effects of irregularly-timed winter weekly low temperature, high rainfall, and high 
wind events on interannual variability in mortality.99   

These approaches will only work, of course, if processes of interest are represented in the data at 
timesteps corresponding to the timescales at which they constrain or impact each other. 

Interpretation of correlation and regression results.  Caution is needed in interpreting both 
significant and nonsignificant results in correlation and regression analyses.  As we are always 

                                                 
96 Provided, needless to say, that variation at these scales are adequately captured by their datasets. 
97 Data blocking is also discussed in § 4.8.2, re testing teleconnections.  See also Helsel and Hirsch (2002: §7.3 – 
Blocking).9 
98 The two-sample t-test is another parametric technique for comparing means of one variable by blocks of another in 
the case of when there are just two blocks.  Parametric and corresponding non-parametric tests are discussed by Helsel 
and Hirsch (2002: Chapter 7).9 
99 This study was also discussed in § 2.2: Scale interactions 
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reminded, “correlation does not imply causation” – that is, be careful not to take significant 
results as validation of hypothesized mechanisms.  See § 4.9 for further discussion, especially in 
regards to nonsignificant results. 

 
4.5 Interannual variability – Spectral analysis and regime shifts 

An important temporal feature of climate is oscillatory patterns at interannual, multidecadal, and 
longer scales.100  These often suggest a link to climate system processes that exhibit similar 
characteristic modes of behavior.  Such oscillations tend to be quasi-periodic, that is, tending to 
fluctuate within a band of frequencies rather than with a strict return period.  Their dynamics are 
often partly obscured by ‘noise’ and processes operating at other frequencies and so need to be 
examined using techniques that separate out signals by frequency bands.  Signals of interest can be 
explored visually using low-pass filters (next section, § 4.5.1) and evaluated numerically using 
spectral analysis (§ 4.5.2).  Another key dynamic of climate is regime shifts at multidecadal and 
centennial timescales; I cover techniques for their analysis in § 4.5.3. 
 
Linkage of such local interannual variability to regional and global dynamics is explored later on in 
sections on spatial pattern analysis, § 4.7 and § 4.8, respectively. 
 

4.5.1 Smoothing filters 

Smoothing filters are low-pass filters, allowing only lower frequencies of a timeseries through.  The 
simplest are moving averages (running means) using unweighted averaging (also, called 
‘rectangular filters’) (e.g., Figure 15a).  These are typically applied over an odd number of years 
and time registered on the middle year of the moving window.101  Other common low-pass filters 
use weighted averages and span a sufficient number of years to remove high frequency variation in 
the data (e.g., Figure 15b, c). 
 
Example weighted filters across a range of filter widths, as applied to annual data, are: 

• 3-year, (1-2-1) weighted filter – this simple ‘triangular filter’ is commonly used for 
removing highest (interannual) frequencies.  The weight denominator is 4, so the weights 
are ¼ - ½ - ¼. 

• 5-year, (1-3-4-3-1) filter – for removing interannual through 3-5 year variability (cf. 
Trenberth et al. 2007: Appendix 3.A).  Weight denominator = 12. 

• More complex functions for emphasizing decadal processes – such as, the 13-year scheme 
in Figure 15b and applied in Figure 15c. 

 
Numerical issues with smoothing include two artifacts: 

End effects.  Because these filters are calculated at the center point of the moving window, they 
cannot be calculated for the first and last few points of a series.  The resulting timeseries will 
then be shorter than the original.  These points can be left blank or padded with a value that 
makes sense in the context to your application: such as the longterm mean (zero, if an anomaly 
series) or the proximate filtered value. 

                                                 
100 A primer on statistics related to climate variability is: 
http://www.nws.noaa.gov/om/csd/pds/PCU2/statistics/Stats/part1/SPrimer1.htm and .../part2/SPrimer2.htm.  For 
accompanying glossaries for statistical terms: http://www.nws.noaa.gov/om/csd/pds/PCU2/statistics/glossary.htm and 
dynamical meteorology: http://www.nws.noaa.gov/om/csd/pds/PCU2/meteorology/glossary.htm  
101 Avoid using non-centered (e.g., prior-moving) averages as this offsets peaks and troughs with respect to actual 
timing.  These are occasionally found in the literature and are what is provided by the moving average option in Excel’s 
graph trendline function. 
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However, it may be desirable for these values to reflect information from the original series’s 
end points.  One method is to apply a filter with stepwise decreasing span length as the filter 
center approaches an end point – with the caveat that the ends will have higher frequency 
variability than in the main body of the smoothed series.  Mann (2004) presents an alternate 
technique that optimizes a choice among three constraints on the smoothed line as it approaches 
the end points: these constraints are on the smoothed line’s local departure from the longterm 
mean, slope steepness, and slope change (the second of these was applied in Figure 15c).102 
 
Spectral side lobes.  Some filters, including weighted filters, create ‘side lobes’ in power spectra 
(§ 4.5.2) outside of the frequency range intended to be captured.  As a result, higher frequency 
variance inadvertently shows up in smoothed (low-pass filtered) signals. 

 
Additional cautions are: 

Not for statistical analysis.  Smoothing is an exploratory tool, to aid visualizing temporal 
patterns.  As mentioned earlier (§ 4.4.2), the resulting series has severely reduced variance and 
elevated serial correlation and so should not be used in statistical testing.  They also should not 
be used in spectral analysis (§ 4.5.2) due to the introduction of side lobes and any end-effect 
corrections.   

Keep these caveats in mind when obtaining processed dataseries from other sources, such as 
teleconnection indices (§ 4.8.2).  To this end, check documentation to see if processing included 
smoothing and, if so, check for the availability of unsmoothed versions. 
 
Missing the details.  Smoothing climate data may become so routine for monitoring mid- and 
longterm behavior that we miss or discount unusual, yet critical events.  As an example, 
Verosub and Lippman (2008) note this caution with respect to tracking effects of single-year 
global climatic events, such as volcanic eruptions, in regional and local climate records. 

 
4.5.2 Spectral analysis – A look in the frequency domain 

Spectral analysis is a method for formally exploring time series for oscillatory behavior (Yiou et al. 
1996, Ghil et al. 2002).  A common spectral technique is Fourier analysis which identifies at what 
frequencies the data most strongly vary.  Results are commonly portrayed as a power spectral 
density function, where oscillation strength (spectral power) is plotted against frequency (Figure 
16a).  Peaks show at what periods (= 1/frequency) a climate record varies. 
 
Narrower peaks reflect oscillations with tighter return periods vs. quasi-periodic dynamics shown 
by broader peaks.  Occurrence of certain characteristic patterns can suggest linkage to continental 
and hemispheric climate dynamics, such as El Niño (more on teleconnections follow in § 4.8).  
Evaluating whether spectrum peaks are statistically significant is an important component of 
spectral analysis (Figure 16a).103  Without statistical evaluation, it’s too easy to place undue 
significance on frequencies corresponding to peaks in spectral power. 
 

                                                 
102 Mann’s Matlab routine is provided at: http://www.meteo.psu.edu/~mann/Mann/tools/tools.html (relocated from that 
given in Mann 2004). 
103 Spectral analysis software with confidence interval capabilities include –   

• IDL: Coherence function 
• on-line spectral calculator: Spectral Analysis (v1.0.6) in Wessa (2009) http://www.wessa.net/rwasp_spectrum.wasp 
• Singular Spectrum Analysis - MultiTaper Method (SSA-MTM) Toolkit (http://www.atmos.ucla.edu/tcd/ssa/) 

   These packages are presented as examples, not as an endorsement or reflecting an assessment. 
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Data are commonly preprocessed for spectral analysis by removing trends and, if present, the 
seasonal cycle.  This processing removes corresponding peaks in the spectrum, making results more 
straightforward.  Trends can be removed by determining residuals from linear regression;81 the 
seasonal cycle removed by subtracting corresponding longterm seasonal means.104  As discussed 
earlier (§ 4.5.1), spectral analysis should not be run on smoothed data because of: 

• Filter side lobes – frequency spillover into higher frequency bands 
• End-effect corrections, if incorporated into smoothed series – also blurring filter 

frequency boundaries 

– both of which significantly affect spectral density (von Storch and Zwiers 2001). 
 
The utility of Fourier-based spectral analysis is limited (1) when periodic signals are nonstationary 
(their frequency changes) and (2) for short timeseries (Kestin et al. 1998).  Wavelet analyses is an 
advanced technique for following changes in the frequency of oscillations and will work for short 
records.  Torrence and Compo (1998), Gedalof and Smith (2001), Ghil et al. (2002), Chang et al. 
(2004), Gray et al. (2003), and Labat (2005) present this method as applied to climate studies.  
 

4.5.3 Regime shifts 

Shifts in features that make up regional climates are not uncommon, having occurred at times over 
the last century and longer timescales (e.g., Pederson et al. 2006, Diaz et al. 2008) (Figure 16b).  
These shifts, which run through both the abiotic and biotic environment, tend to be linked to regime 
changes in hemispheric atmosphere and ocean circulation (e.g., Hare and Mantua 2000, Gedalof and 
Smith 2001; such cross-scale geographic linkages are discussed in § 4.8).  Regime shift step-
detection techniques are presented by Box and Tiao (1975),105 Biondi et al. (2002), and Rodionov 
and Overland (2005).106   
 
Changes in regime are also expressed in records as breaks in trend slopes.  Breakpoint analysis 
techniques in climate and ecological studies include piecewise-linear (segmented) regression (Tomé 
and Miranda 2004, Marlon et al. 2009)107 and quantile regression (Koenker and Schorfheide 1994) 
 
Regime analysis is best done on records that are from the start free of artificial temporal 
inhomogeneities (e.g., station changes) as these change points complicate shift detection.  Note also 
that methods correcting data heterogeneities (§ 3.4) run the risk of removing true regime shifts.  
Such corrections should be (1) omitted from datasets bound for regime change studies or (2) applied 
carefully only for the clearest station change cases, and then well documented and followed up with 
a review of regime shift results for interference at correction change points. 
 
4.6 Daily analysis – Structure and extremes 

At finer temporal scales, analysis of daily and hourly records can reveal the characteristic structure 
of weather events and the frequency of extremes for a site.  These features are generally a reflection 
of a region’s climate.  Shifts in their structure can reveal important climate changes as much as 

                                                 
104 Longterm seasonal means are longterm means by day, week, month, or season corresponding to the timestep of the 
observed data.  ‘Longterm’ averaging is over station record, 30-year normals, or other set period. 
105 See, for example, Pederson et al.’s (2006) implementation of Box and Tiao’s (1975) intervention analysis and other 
techniques in the detection of regime shifts. 
106 Rodionov and Overland’s model is available at: http://www.beringclimate.noaa.gov/regimes/index.html  
107 Tomé and Miranda (2004)’s method is implemented in Miranda and Tomé (2009).  Marlon et al. (2009) used the R 
package ‘Segmented’ (Muggeo 2009).   See also references re use of breakpoint analysis in testing record homogeneity 
(footnote 57).  
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altered means and interannual variability do.  Meehl et al. (2000) and Trenberth et al. (2003) review 
modes by which the character of weather events change under altered climate.  Among recent  
observed shifts in daily structure are more days with warm temperature extremes, fewer cold 
extremes, and greater occurrence of extreme daily precipitation (Easterling et al. 2000, Trenberth et 
al. 2007).   
 
This section presents means for characterizing events (§ 4.6.1) and ways to assess their change in 
terms of: 

• Event structure parameters (§ 4.6.2) 
• Frequency distribution functions (§ 4.6.3) 
• Extreme value analysis (§ 4.6.4) 

Records with corrected or infilled values (§ 3.6) should be omitted from these analyses. 
 

4.6.1 Event structure characterization and display 

Event structure can be evaluated graphically with frequency distribution plots (Figure 17).  In this 
technique, occurrences of a given event are ‘binned’ by: 

• Event magnitude (Figure 17a, Figure 20d) 
• Timing (season, time of day; Figure 17b) 
• Duration or prevalence (Figure 17c, Figure 19b) 
• Other variable offering a perspective on event structure. 

 
A more analytical presentation is box-and-whisker or notch plots108 which express the median, 
standard deviations (SD), quartiles, range of values, and outliers (Wilks 2006: §2.5)12 (Figure 18).  
For variables with highly skewed frequency distributions (such as precipitation), values can first be 
transformed to normalize the data.  As noted earlier, typical transformations for precipitation 
include natural log (Figure 18), square root, and cubic root (see § 3.4.3.1 for methods; cautions re 
frequency-distribution transformations are covered shortly).  Toews et al. (2007) present a box plot 
application for seasonal analysis of event structure.109 
 
For precipitation and other discrete-event variables that have a reasonable likelihood of zero values 
(e.g., dry days), only non-zero values should be incorporated in box plots and related analyses.110  
These plots then show the structure of precipitation events just for when they occur.  An additional 
graphic can be employed to show the frequency of whether or not there’s an event (as in, number of 
wet vs. dry days).   
 
Issues in the analysis of daily event structure include: 

Observation biases.  For precipitation, observer practices can lead to underreporting the smallest 
events and a biasing toward certain frequency bins over others (e.g., favoring recording daily 
values in multiples of 0.05 inches).  Daly et al. (2007) evaluates the consequences of these 
biases. 
 
Corrected data.  Omit inserted precipitation daily values parsed from multiday accumulated 
totals (§ 3.3.3), infilled (§ 3.6), and other corrected data that may not adequately capture (and 

                                                 
108 Box-and-whisker plots are also known as ‘box plots.’  The difference between box and notch plots is described in 
Figure 18. 
109 This application is for the ‘R’ statistical computing environment.  For box plot graphing in general, PACN (2008) 
gives a procedure for Excel. 
110 Using only non-zero values is also practical if a logarithmic transform is selected [because log(0) is undefined]. 
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instead blurs) a site’s true daily event structure.  Be aware that frequency distribution parameters 
and estimation of frequency distributions (especially with respect to extremes, § 4.6.4) can be 
highly sensitive to data problems and their correction. 
 
Back transformation of mean, percentile, and interval parameters.  When nonlinear transforms 
are applied to event data, caution is needed in back transforming structural parameters to the 
original linear scale.  The mean calculated in transformed space generally has little 
correspondence to the variable’s actual mean (in linear space), while the median (50%-tile) and 
other percentiles do.111  Any interval – such as interquartile range (IQR, cf. Figure 18), standard 
deviation (SD), and confidence intervals (CI) – determined in transform space and back 
transformed also has little meaning.  Instead, an interval should be represented in terms of its 
upper and lower limits, where these are determined in transform space and back transformed to 
linear values.   

 
4.6.2 Changes in event structure parameters   

Altered daily or hourly structure can be assessed by analyzing changes in event structure 
parameters such as those used to characterize events (§ 4.6.1).  These can evaluated simultaneously 
using quantile regression (e.g., Beniston and Stephenson 2004; § 4.3.3) or individually with trend 
and interannual variability analyses (e.g., Figure 19d; § 4.3,  4.5).  Candidate parameters include: 

• Frequency of events in a specific range of a binning variable – such as a specific bin in a 
frequency distribution histogram (as those in Figure 17; see § 4.6.1 re binning) 

• Frequency of events beyond a given threshold (threshold exceedance) – as might define 
extreme events and be based on, for example:  
o A threshold critical to the system – such as temperatures below freezing or a critical 

precipitation rate (e.g., Mearns et al. 1984, Beniston and Stephenson 2004) 
o An upper or lower percentile (e.g., Figure 19a; Climate Extremes Index thresholds per 

Gleason et al. 2008: Figure 15a)112 

• Frequency distribution parameters – as those given in box plots 
o For example, the interquartile range (IQR, Figure 18) determined over short intervals 

in the record (e.g., by year or decade) 
 

4.6.3 Changes in frequency distribution functions 

Figure 19a shows changes in nighttime temperature extremes as a timeseries.  Such change can also 
be evaluated in terms of shifts in its relative frequency distribution (Figure 19b).113  Changes in this 
distribution can be analyzed using a test for identical distributions, such as the two-sample 
Kolmogorov-Smirnov test (Conover 1999).114,115  This nonparametric test is sensitive to differences 
in shape or position of a frequency distribution – both types of changes are illustrated in Figure 19b. 
 
To apply the Kolmogorov-Smirnov identical distribution test, we use a cumulative form of the 
relative frequency distribution of a variable.  This is as the cumulative probability distribution  

                                                 
111 Helsel and Hirsch (2002: §9.6.3)9 discuss corrections for transformation biases in the mean. 
112 This would be a reduced form of quantile regression. 
113 Relative frequency distribution also referred to as the probability distribution (or density) function (PDF). 
114 The 2-sample Kolmogorov-Smirnov test for identical distributions is also known as the Smirnov test (Conover 
1999).  This test is distinguished from a one-sample Kolmogorov-Smirnov test, which is a goodness-of-fit test used to 
evaluate an observed distribution against a theoretical one (e.g., to test for normality38). 
115 An on-line calculator for the 2-sample test is at: http://www.physics.csbsju.edu/stats/KS-test.html (Kirkman 1996). 
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function,116 where relative frequencies are accumulated (summed) along the x-axis until all 
observations are accounted for.117  Figure 20a, b illustrate the relationship between these two 
distribution functions and how changes in the shape of one is reflected in the other.  The 
Kolmogorov-Smirnov test evaluates if the separation (D in Figure 20c) between the cumulative 
distribution functions of two sets of observations is significant (Figure 20b, c, d). 
 
Another technique for comparing frequency distributions is quantile-comparison (or quantile- 
quantile) plots, where the percentiles of two distributions are plotted against each other.118  These 
graphics are most useful if accompanied by plotted confidence intervals or statistical tests to 
evaluate if the distributions are identical. 
 

4.6.4 Extreme value analysis 

Changes in occurrence of extremes can arise from (1) shifts in location, dispersion, and asymmetry 
of the frequency distribution (i.e., in the mean, variance, skewness, and other moments) and (2) 
changes in the structure of the far ends of the distribution (change in tail shape) (Meehl et al. 2000).  
While testing for overall changes in frequency distribution can rely on methods discussed in § 4.6.3, 
evaluating trends in extreme events requires detection of changes in the tails of frequency 
distributions – where extremes lie but whose distribution is difficult to estimate by standard 
statistical methods. 
 
Katz and Brown (1992), Kharin and Zwiers (2000), and Goubanova and Lia (2007) describe and 
implement an extreme value analysis technique based on a generalized extreme value distribution 
(GEV) which selects from three possible asymptotic distribution models fitted to extremes in the 
record.  Frei and Schär (2001) present a method for detecting trends in extreme event return periods.  
Coles (2001) and Hosking and Wallis (1997)119 provide introductions to extremes value analysis in 
theory and practice.120,121   
 
4.7 Spatial pattern analysis.  I: Regional connections 

Once the temporal dynamics of a site’s climate has been explored (§ 4.3– 4.6), we can ask how its 
behavior fits in with the region or farther afield:  Is the station representative of a park and the 
region?  Or does its dynamics contrast with neighboring stations?  Tools to assess spatial coherence 
include geostatistical and cross-spectral techniques (§ 4.7.1– 4.7.3).   
 

                                                 
116 Also referred to as the cumulative distribution  function (CDF) or cumulative probability distribution (CPD) 
117 A re-expression of the cumulative distribution function is the probability of exceedance = [1 - (cumulative 
distribution function)].  The CDF gives the percentile for a value among all observations, the probability of exceedance 
gives the chance of observing a value (e.g., a precipitation amount) above a certain level and corresponding return 
period.  This approach is often used in extreme value analysis techniques (§ 4.6.4) and extended-range weather outlooks: 
http://www.cpc.noaa.gov/products/predictions/90day/. 
118 Q-Q plots in Helsel and Hirsch (2002: §2.2.5)9 and Wilks (2006: §4.5.2). 
119 Hosking and Wallis (1997) available in part on Google Books (see References).  
120 Online resources re extreme value analysis (see Stephenson and Gilleland 2005 for a review of software): 

• http://www.cru.uea.ac.uk/projects/mice/html/extremes.html 
• http://www.met.rdg.ac.uk/~han/Extremes/extreme1.pdf - a presentation (Stephenson 2002) 
• For S-Plus, R, MATLAB, others: http://www.rap.ucar.edu/staff/ericg/softextreme.php; specifically for R: 

http://www.isse.ucar.edu/extremevalues/evtk.html.  See also: 
http://www.rap.ucar.edu/staff/ericg/extremereading.html  

• Statistical Tool for Extreme Climate Analysis (STECA): 
http://www.cics.uvic.ca/scenarios/index.cgi?Other_Data#steca  

121 See also Makkonen (2008) for additional discussion of this method and related problems. 
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These analyses can be complemented by on-line national monitoring and outlook products which 
provide a near-real time, regional perspective on a park unit’s climate.  A selection of these is 
presented in Table 2. 
 

4.7.1 One-point correlation map    

A point-correlation map displays the spatial distribution of correlation coefficients between the 
record at a single location with those of other points within a domain (e.g., Figure 21a).  These 
maps are a straightforward means to reveal spatial connections between a site and surrounding 
region.122  Interpretation of these maps is facilitated if statistical significance of correlations is also 
indicated (e.g., by stippling, as on Figure 19d in another application). 
 

4.7.2 Spatial variation – Semivariograms 

We discussed spatial autocorrelation earlier in the context of infilling missing data (§ 3.6.4).  These 
techniques can also be used to assess how homogeneous vs. heterogeneous climate is across a 
domain.  Related to autocorrelation, the semivariogram is the spatial variance as a function of 
distance.123  The semivariogram reveals how rapidly or slowly stations become less related to each 
other the farther apart they are (Figure 21c).124  The relationship with distance can additionally 
depend on direction (anisotropy; evident in Figure 21d – see caption discussion).   
 
The semivariogram is usually assessed for a point in time in the record (e.g., a day, week, or month 
depending on the climate process being evaluated: e.g., February 1996 in Figure 21c).  The shape of 
a domain’s semivariogram often changes with season, linked to seasonal climate processes.  
Controlling for season, the semivariogram can be relatively stable over decades, especially if it is 
controlled by topography (Fuentes et al. 2006).  At the event level, the shape can be tied to synoptic 
conditions (rainfall type) as well as elevation (Şen and Habib 2000).  Mapping the semivariogram at 
a set distance (e.g., 40km in Figure 21d) can reveal a regional climate’s spatial connectivity and 
anisotropy (Figure 21d, e – see caption).  Spatial statistical references, techniques, and issues are 
discussed further in § 3.6.4– 3.6.5. 
 

4.7.3 Spectral coherence – Correlation in the frequency domain 

Just as spectral analysis (§ 4.5.2) reveals characteristic oscillatory behavior in a single station’s 
climate record, cross-spectral analysis asks if 2 stations’ records co-vary at similar frequencies.125  
Cross-spectra show in which frequency bands station temporal dynamics are highly correlated 
(spectral coherence, h2) and if this coordination is in or out of phase (Figure 22).  Coherence is the 
squared correlation coefficient for a given frequency band (von Storch and Zwiers 2001) and so, in 
a way similar to regression R2 (§ 3.4.3.2), can be interpreted as the percent variance shared by the 
two series in that range of frequencies. 

                                                 
122 An online facility for creating correlation maps is http://www.esrl.noaa.gov/psd/data/correlation/.  While intended for 
hemispheric teleconnection correlations (§ 4.8.2), it can be adapted to creating site point-correlation maps by inserting a 
site station record as the custom timeseries (http://www.esrl.noaa.gov/psd/data/correlation/custom.html).  See help and 
instruction in the page’s left frame. 
123 The semivariogram (γ) for variable z is:  γ(h) = ∑ + 2

)(2

1
)](-)([ hxzxz

hn
, where x is any location, h is the separation 

distance between pairs of data points, and n(h) is the number of pairs that are separated by h; summation is over all such 
pairs.  This equation expresses γ as a function of h (Figure 21c).  Note that γ is calculated as half the spatial variance, 
hence ‘semi-variogram.’ 
124 Note that semivariance and autocorrelation reflect the same spatial process, but in the opposite manner:  as stations 
become less related with distance, semivariance increases (Figure 21c), while autocorrelation decreases (Figure 11b, d). 
125 Cross-spectral analysis was first introduced in the context of comparing timeseries of two variables (§ 4.4.1, § 4.4.2). 
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Techniques for cross-spectral analysis include Fourier and wavelet approaches (Ghil et al. 2002, 
Whitcher et al. 2000).103  Such analyses are most useful if they test for statistical significance in 
coherence and phase (Figure 22b, c). 
 
4.8 Spatial patterns.  II: Hemispheric teleconnections 

As our ability to monitor the global climate system has grown over the last half century, we have 
become increasingly aware of connections between local climate variability and remote global-scale 
atmospheric and ocean dynamics.  Such ‘teleconnections’ are fundamental to our understanding the 
roots of regional interannual climate variability and to exploring the mechanisms by which 
hemispheric processes scale down to the ecology of species and landscapes (cf. Stenseth et al. 2002, 
Graumlich et al. 2003, Stenseth and Mysterud 2005, Pederson et al. 2006).126 
 
In this section, I briefly introduce well-recognized teleconnections (§ 4.8.1), present analytical 
approaches (§ 4.8.2), and discuss key implementation concerns (§ 4.8.3). 
 

4.8.1 Modes of variation in hemispheric circulation – Multiyear oscillations 

Predominant teleconnections for North America have their source in four major interannual to 
multidecadal oscillations of the climate system: 

• El Niño-Southern Oscillation (ENSO)127,128  
• Pacific Decadal Oscillation (PDO)129,130 
• Northern Annular Mode (NAM)/North Atlantic Oscillation (NAO)131  
• Atlantic Multidecadal Oscillation (AMO)132 

These climate system oscillations have characteristic centers of action typically in places where 
there is strong coupling between the ocean and atmosphere (e.g., Figure 23a, top).  These centers 
are quasistationary in their location, constrained by ocean basin geometry and basin-wide ocean 
circulation.  The centers have characteristic quasiperiodic, multiyear modes of behavior in both 
ocean and atmospheric measures [e.g., sea surface temperatures (SST), sea level pressure (SLP); 
                                                 
126 Comparable analyses for marine ecosystems include: Hare and Mantua (2000; with some terrestrial measures) and 
Schwing et al. (2009) 
127 General ENSO reference: Trenberth (1997).  See also UCAR tutorial webcasts re ENSO under: 
http://www.nws.noaa.gov/om/csd/pds/PCU2/IC2.4.shtml (free registration, login) 
128 For looking at El Niño-related Pacific Basin dynamics but in the Northern Hemisphere, a counterpart to the Southern 
Oscillation (SO) is the Northern Oscillation (Schwing et al. 2002).  However, indices for the two oscillations show 
similar dynamics and, in the literature, the SO Index (SOI; Table 4) remains the more common of the two for North 
American analyses.  (cf. http://www.pfeg.noaa.gov/products/PFEL/modeled/indices/NOIx/noix_bkgrnd.html) 
129 General PDO reference: Mantua et al. (1997).  Re the PDO and what is called the North Pacific Oscillation (NPO):  
The term “North Pacific Oscillation” is unfortunately used in the literature to refer to two distinct interannual dynamics 
in the North Pacific – either as (1) equivalent to the PDO (Gershunov and Barnett 1998) or (2) an oscillation whose 
spatiotemporal pattern is orthogonal (independent) of the PDO (Minobe and Mantua 1999).  The first pattern 
predominately affects climates across North America (Trenberth and Hurrell 1994, Hurrell 1996, Mantua et al. 1997), 
the second pattern influences climates of the western Pacific (Linkin and Nigam 2008).  Neither of these should be 
confused with the Northern Oscillation.128 
130 Much discussion re the PDO focuses on multidecadal regime shifts at roughly 15-25 and 50-70 year cycles (Minobe 
1997, 1999).  In addition, the PDO Index (Table 4) has substantial interannual variability (Figure 23a) – index 
fluctuations in and out of + or – territory can seen as oscillations within a PDO regime.  However, whether regime shifts 
are actually characteristic of the PDO is evaluated using the paleorecord by Gedalof et al. (2002). 
131 The NAO is considered part of NAM dynamics and so are grouped together.  The NAM is also referred to as the 
Arctic Oscillation (AO).  General reference for NAO: Hurrell et al. (2003); for NAM/AO: Thompson and Wallace 
(2000) 
132 See Schlesinger and Ramankutty (1994), McCabe et al. (2004) 
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Figure 23a, b].  These oscillations are controlled by long-acting, geographically-broad interactions 
between atmospheric and ocean circulations and run deep vertically in both systems.  These 
dynamics are not fully understood, however.133  For brief overviews of these oscillation systems, 
their centers of action, temporal dynamics, and teleconnections, see Stenseth et al. (2003).134 
 
For land and inland-waters resource science applications, we are interested in these oscillations’ 
teleconnections to the climates of continents adjacent to (or of ocean islands embedded in) 
corresponding oceans, but removed from the centers of action.  These teleconnections are the 
downstream consequences of location and strength changes in the centers-of-action’s (1) warm and 
cool pools of ocean water and (2) semipermanent high and low pressure systems in the lower 
troposphere.  Consequences are shifts in the position and intensity of the Intertropical Convergence 
Zone, Mid-latitude Jets, and Subtropical and Polar Highs – and, linked to these, of tropical and mid-
latitude storm tracks, summer monsoons, winter advection of warm, moist or cold, dry air masses, 
and marine layer stability (e.g., Dai et al. 1998, Castro et al. 2001; Figure 24). 
 
Table 3 provides entry links for websites displaying teleconnection patterns for surface air 
temperature, precipitation, and other station variables in terms of their means and extremes. 
 

4.8.2 Testing for teleconnections – Hemispheric circulation indices 

For these oscillations, circulation indices are used to represent their dynamics in a single timeseries.   
These portray the principal mode of variability at a center of action (e.g., SLP anomalies in the 
Aleutian Low pressure center, for the PDO-related North Pacific Index, NPI – Trenberth and 
Hurrell 1994; Table 3) or in the difference between dipoles (e.g., Tahiti-Darwin SLP difference for 
the Southern Oscillation Index, SOI – Figure 23b, top).  Table 4 presents indices for oscillations 
with major teleconnections across North America along with download links.  Take care that 
candidate index datasets for your analysis are not smoothed series because of problems they present 
in statistical evaluation (§ 4.5.1: Additional cautions).135 
  
To explore teleconnection signals in local and regional climates, common techniques are: 

Correlation approaches.  These use linear correlation to evaluate the relationship between 
station records and a circulation index.  Techniques include: 

• Simple linear correlation between a station timeseries and the index (§ 4.4.1). 
• Cross-correlation (§ 4.4.1) over, for example, weekly, monthly, or seasonal lags based on 

known or hypothesized mechanics (e.g., Barton and Ramirez 2004, Wright and Calderón 
2006).92 

• Point-correlation maps (§ 4.7.1), with the index as the point timeseries (Figure 24a).  
Teleconnection maps, as on websites in Table 3, are commonly based on this method 
(e.g., Castro et al. 2001).  NOAA provides an on-line facility122 for generating index-
correlation maps with built-in climate fields (demonstrated in Figure 24a).  

 
Cross-spectra/Cross-wavelet.  High spectral coherence (§ 4.7.3) between timeseries for a station 
and an index may indicate that local variability is dynamically linked to the corresponding 
hemispheric oscillation.  The phase and frequency bands of this coherence may suggest or lend 

                                                 
133 In addition, these dynamics are not considered to be genuinely captured by today’s global climate models, with 
implications re our ability to understand how these key modes of climate variability may change under future climates. 
134 See also: Steward (2005): http://oceanworld.tamu.edu/resources/oceanography-book/oceananddrought.html  
135 Also see caveats regarding smoothing in timeseries comparisons (§ 4.4.2) and spectral analysis (§ 4.5.2). 
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support to hypotheses for such a mechanism.  Cross-wavelet analyses can also be applied with 
these same objectives (§ 4.7.3). 
 
Data blocking.136  Dividing an index timeseries into groups (blocks) of years can add power to 
statistical tests for teleconnections.  This is usually done by oscillation phase – positive vs. 
negative phase years – or, in addition, by eliminating years with low or neutral signal (e.g., 
Figure 23b: top).137  Blocking by phase focuses an analysis on regime state rather than intensity; 
blocking out near-neutral conditions focuses on strong episodes most likely to have detectable 
downstream effects (cf. next section, § 4.8.3: Forcing strength).    

Two-factor blocking, such as by the phases of two indices, allows for an assessment of their 
interaction (e.g., Figure 23b: bottom).138  Alternatively, the second or yet additional factors can 
be any variable known or hypothesized to alter teleconnections (such as season, response 
region).  Analysis of teleconnections with multifactor-blocked data can be by individual 
combinations of the blocks (e.g., the four combinations of PDO and AMO +/– phases in Figure 
24b) or with all considered simultaneously, as in multifactor analysis of variance 
(MANOVA).139 
 
Regime shift detection.  A reflection of circulation regime shifts in timeseries of landscape 
climatic, hydrologic, and ecological variables can provide evidence of the impact of 
hemispheric climate processes on local dynamics (Hare and Mantua 2000; Figure 24c).  
Techniques for regime shift detection are referenced in § 4.5.3.  As with local climate data, 
check for temporal inconsistencies created in the processing of index timeseries you’re 
evaluating (e.g., Table 4: footnote 154). 
 
Principal component analysis.  Generally speaking, principal component analysis (PCA) is used 
to describe the multivariate behavior of a system as a much reduced set of variables.  For 
example, Hare and Mantua (2000) used PCA on an array of environmental variables to distill 
out principal components strongly related to PDO dynamics.  In geophysics, PCA is commonly 
referred to as empirical orthogonal function (EOF) analysis, where it is applied to 
spatiotemporal data for one parameter (such as temperature anomalies).140  This technique 
extracts the most prevailing patterns in space and their corresponding timeseries (e.g., Figure 

                                                 
136 Blocking was introduced earlier, in the context of looking for interaction between slow vs. fast-moving processes: 
§ 4.4.2: Process timescales differ, Mode 2. 
137 Note that delineation of an oscillation’s phases can be an issue:  there is no clear or consistent definition of what 
magnitude or duration of change constitutes a shift to the opposite phase and there is no single index or other definitive 
measure of these dynamics in terms of geography, variable, or season (hence multiple indices per oscillation in Table 4, 
Figure 23b; see also points re PDO phases in footnote 138). 
138 An example 2-way blocking by ENSO and PDO phases is given by JISAO (University of Washington): 
http://www.cses.washington.edu/cig/pnwc/compensopdo.shtml.  Some points regarding their presentation: 

• PDO phases are presented both in terms of multidecadal regime (columns) and annual state (cell entries).130 
• Before 1925, there is reduced certainty in climate records used to determine PDO phase.  From 1900-1924, the phase 

is variously considered as negative (in the JISAO table; also Mantua et al. 1997) or positive (e.g., Biondi et al. 2001 
based on proxy records: http://www.ncdc.noaa.gov/paleo/pubs/biondi2001/biondi2001.html; Rodionov and Overland 
2005: cf. Figure 16b). 

• Since 1976/77, shortterm multiyear excursions to negative and back to positive territory have been suggested as 
possible regime changes (e.g., 1999, 2003, 2006 shifts in the JSIAO table, 1989 shift in Hare and Mantua 2000; see 
also Rodionov and Overland 2005: Figure 16b).137  The perspective of additional decades is needed to judge whether 
these are true regime shifts or reflect year-to-year variation within the positive phase that started in 1977 (see Figure 
23a, bottom). 

139 See Helsel and Hirsch (2002: §7.2.2)9 
140 EOF analysis can be implemented using eigenvalue decomposition (eigenanalysis) or singular value decomposition 
(SVD); see von Storch and Zwiers (2001: §13.2.9). 
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23a top and bottom, respectively, for the first component of the PDO).141  In interpreting EOF’s, 
the first few functions (principal components) tend to explain a sufficient portion of the variance 
to warrant exploring their scientific meaning; the remaining EOF’s are usually only of minor 
significance.142 

As a key method, EOF’s reveal primary modes in teleconnections (e.g., Wallace and Gutzler 
1981).  A bivariate technique related to EOF analysis is canonical correlation analysis (CCA); 
this approach extracts spatiotemporal patterns common to two spatially and temporally 
distributed parameters.  von Storch and Zwiers (2001: Chapters 13, 14) present these pattern 
detection techniques. 
 

4.8.3 Properties of circulation oscillations and their indices – Insights and pitfalls 

Circulation indices offer us the opportunity to understand linkages from the global to local.  
Exploring this scale translation requires insights into the nature of circulation oscillations and their 
indices.  These insights can help design analyses, seek mechanisms in interpretation, and avoid 
pitfalls. 
 
Key features of oscillations and indices are: 

Season dependence.  Dynamics at centers of action fluctuate seasonally, and their downstream 
connections follow suit.  As a result, seasonal indices tend to best capture teleconnections.  
Annual indices often blur the controlling signal, while individual monthly values divide seasons 
up arbitrarily, weakening detection of a seasonal effect.143,144  The key teleconnective season 
(and how it is defined) may depend on the site climate variable evaluated, such as for 
temperature vs. precipitation.145  In the extratropics, the strongest signal-to-noise ratio is 
commonly in winter, giving the most robust teleconnections.146  However, it can be more 
fruitful to take the season that corresponds to timing of key local dynamics, such as a summer 
index for connections with the summer monsoon (e.g., Castro et al. 2001).  On the other hand, 
between-season interactions might alternatively suggest evaluating an index from a different 
season – for example, if summer moisture conditions are more a function of winter snowpack 
and its melt regime, then a winter or spring index may be more appropriate than a summer one. 
 
Forcing strength makes for a teleconnection.  Strong events are most likely to propagate 
downstream and result in signals relevant to local dynamics.  Weak signals generally get 
dissipated en route and swamped locally by other sources of variability.  As a result, 

                                                 
141 EOF analysis terminology (with corresponding PCA terms): 

• Empirical orthogonal functions represent the spatial pattern (principal component loadings) 
• EOF coefficients express the temporal pattern (principal component scores) 

142 Note that in such a spatiotemporal analysis, high percent-variance explained (in the first EOF’s) ideally comes from 
the temporal dynamics of the entire spatial field being explained moderately well.  However, note that relatively high 
variance explained (often in subsequent EOF’s) can also come from dynamics of a restricted part of the domain being 
explained extremely well – this describes how one area is behaving but does little to show how different regions are 
connected. 
143 This is due to within-seasonal variability either (1) because a seasonal effect may be more concentrated in one month 
one year but in an adjacent month in the next occurrence or (2) because month boundaries are arbitrary – what’s taken 
to be a month’s difference in timing may only be a matter of a few days. 
144 Rather than using a standard scheme to define seasons (e.g., winter = December-January-February), it can be more 
powerful to delineate seasons based on breaks in system dynamics.  For example, Trenberth and Hurrell (1994) define a 
winter NPI covering November through March (http://www.cgd.ucar.edu/cas/jhurrell/npindex.html).   
145 Plotting monthly teleconnection results can suggest an optimal delineation of key seasons and if that differs for 
different local variables (e.g., http://cses.washington.edu/cig/pnwc/clvariability.shtml#figure5). 
146 For an example from the Pacific Northwest, see http://cses.washington.edu/cig/pnwc/clvariability.shtml#figure1. 
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teleconnections are most evident when analyses contrast the strongest periods of opposite 
phases (e.g., by blocking out near-neutral periods, discussed in § 4.8.2: Data blocking) (Figure 
23b, top).   
 
Basin interactions.  Circulation oscillations arising in different ocean basins or in different 
sectors of a basin interact, such as between the PDO and AMO (McCabe et al. 2004) and ENSO 
and PDO (Gershunov and Barnett 1998), respectively.  This leads to conditional 
teleconnections, where the phase of one oscillation influences the downstream expression of 
another (e.g., Figure 24b).  Two-factor blocking and related multifactor techniques are 
approaches for evaluating interactions (cf. § 4.8.2: Data blocking). 
 
Circulation indices are broadly integrative.  Oscillation indices track climate dynamics of broad 
regions of the globe that have strong spatiotemporal coherence across many variables (Figure 
23a).  Stenseth and Mysterud (2005) layout a conceptual framework for how these hemispheric, 
seasonal, and multivariate indices present an integrated view of climate that sets up local 
conditions for a season or longer.  These establish prevailing seasonal conditions in ways that 
can have as much power in explaining ecological dynamics as do analyses of local weather 
(e.g., Hallett et al. 2004, Forchhammer and Post 2004).147 

 
Additional considerations in scale linkages to landscapes and species are: 

Local conditionality.  How forcing from a given teleconnection plays out across landscapes and 
regions can be conditional on physiographic features such as aspect, altitude, and latitude.  This 
is especially the case if teleconnections affect where a critical weather threshold, such as a 
storm’s snowline, crosses the domain (Stenseth and Mysterud 2005). 
 
Indirect ecological effects.  In evaluating hemispheric linkages to ecological dynamics (while 
skipping over local climate), keep in mind that some consequences of circulation 
teleconnections may be indirect, possibly with strong temporal lags and spatial offsets.  These 
may arise from population and trophic dynamics and from biogeographic linkages (e.g., for 
regional or hemispheric migrants148) (Forchhammer and Post 2004). 

 
Important caveats and common pitfalls in teleconnection analyses include:149 

Responses nonlinear.  Within a given oscillation’s phase, teleconnections are not expressed the 
same way in each occurrence.  The relationship between an oscillation’s phase and its local 
teleconnections may in fact change sign between lower forcings vs. higher ones.  This is 
because oscillation dynamics often shift the position of an atmospheric circulation system (e.g., 
storm track latitudes) into a region at first and, subsequently under a more intense 
teleconnection, push the circulation farther along but out of the region.  Such non-monotonic, 
complex dynamics are of course not adequately explored with linear correlation methods.  
Careful period blocking can help reveal these dynamics.    
 
Responses nonstationary.  Teleconnections also appear to change with time.  Some 
nonstationarity can be attributed to behavior conditional on the phase of other oscillation 

                                                 
147 N.B. – Descriptions of circulation patterns in Forchhammer and Post (2004) are not entirely accurate; Stenseth et al. 
(2003) provide a better review for ecological audiences.  Forchhammer and Post (2004) do, however, present key 
insights from three case studies on teleconnections and ecological dynamics. 
148 For example, when migrants have distant seasonal ranges strongly affected by a teleconnection seen there, but not in 
the local study domain. 
149 Stenseth et al. (2003) also review benefits and drawbacks of teleconnection analyses. 
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systems, as noted earlier.  Aside from such conditionality, keep in mind that key teleconnections 
found may not have held throughout the historical period nor persist in the future (e.g., Gedalof 
et al. 2002).   
 
Prediction.  Much attention has been given to the prospect of predicting local climate and 
ecological dynamics based on teleconnections.  While teleconnections with local dynamics may 
be statistically significant, the percent variance explained may put into question the utility of 
relationships for prediction.150  Low explained variance comes from various sources: 

• Nonlinearity, nonstationarity, and indirect effects of teleconnections that reduce their 
detection. 

• Centers of action for oscillations are much removed and their signal is altered in transit by 
unaccounted-for downstream climate processes – including stochastic and chaotic 
behavior inherent to the climate system. 

• Hemispheric circulation dynamics are only part of the local story – Other, independent 
local factors also control site climate and ecological behavior. 

 
4.9 Interpretation of results – The good, the bad, and the ugly 

4.9.1 Statistical interpretation 

On completing analyses, comes interpretation of descriptive and statistical results and their 
scientific review (next section, § 4.9.2) (Figure 1c).  Recall your research questions and 
corresponding stated hypotheses – in doing so, confirm that your analyses are addressing what you 
intended.  For statistical tests, review results and their significance level, and formally state 
outcomes (e.g., rejecting null hypotheses or not). 
 

4.9.2 Scientific interpretation of statistical results 

Caution is needed in interpreting both significant and nonsignificant statistical results:  

Significant results.  Statistically-significant results lend support to your hypothesized dynamics, 
but not to validation.  In tests comparing variables, keep in mind, as noted earlier, the 
proposition that “correlation does not imply causation” (§ 4.4.2: Interpretation of correlation).  
There may be other underlying mechanisms that give rise to the relationships you see.  In such 
bivariate as well as spatial and temporal relationships, significant patterns may turn out be 
nonstationary – that is, only present under conditions set by some undetected overriding process 
(e.g., a seemingly persistent circulation regime).  Given a longer timeframe, relationships seen 
today may shift or disappear.151  The role of undetected, unevaluated factors can interfere with 
seeking mechanisms in the interpretation of results. 

 
Weak results.  Nonsignificant results also need to be evaluated with care.  Weak results 
(tendencies consistent with a hypothesis, but not backed by statistical significance) should not 
be reported as apparent support for your hypothesis.  Rather they support re-evaluation of: 

• Available data – Are additional, appropriate data sources available that would lengthen a 
station’s record, or allow evaluation across several locations?  The advantage of this is 
that the power of statistical tests increases with number of independent observations. 

                                                 
150 The distinction here is between significance level (e.g., p<0.05) and % variance explained, e.g., R2 for regression 
analysis (§ 3.4.3.2).  It is not unusual for teleconnection analysis to yield highly significant regressions, say p<0.01, but 
with it low to modest % variance explained, commonly with R2’s<0.30. 
151 See Schumm (1991: Chapter 3) for pitfalls in interpreting results in space and time. 
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• Data processing – Review if dataset development methods adequately corrected problems 
or, instead, obscured patterns being testing for. 

• Analysis methodology – Some techniques are more powerful than others in detecting 
patterns.  Review analysis options (data transformations, alternate tests, etc.) and check 
that their assumptions are followed. 

 
Clearly nonsignificant results.  From a statistical perspective, clearly nonsignificant results 
obviously do not support your hypothesis.  From a scientific perspective, this can be the end of 
story or lead to alternate hypotheses.  However, another proposition that “correlation is needed 
to prove causation” is not necessarily the case.  We may just not be looking at the question from 
the right perspective or with the right tools: system complexity can mask causation, making it 
recalcitrant to standard approaches.  Climate processes and affected biotic components (1) are 
highly interactive with positive and negative feedbacks, (2) act across a range of time and space 
scales, and (3) often entail non-monotonic or threshold responses.  Numerical simulation models 
are tools employed to understand dynamics of such highly connected systems. 

 
 
5.0 Synopsis 

The objectives of this report are two-fold.  First, to layout a methodology for developing quality 
climate datasets appropriate for resource management science.  Second, to introduce the array of 
analysis techniques available for answering the many questions we often ask regarding climate 
dynamics and their interaction with a region’s ecology and other landscape processes. 
 
Overarching guidelines for creating datasets are:  

(1) Hypotheses dictate the requirements of datasets, selection of data clean-up methodologies, 
and corresponding analyses.   Keeping hypotheses in mind throughout the process will help 
ensure a successful outcome:  a credible dataset and valid results. 

 
(2) No dataset is perfect.  There’s a trade off between working with a clean highly-processed 

data set and one that is as unadulterated as possible. 

(a) No raw observational dataset is free of collection and archive errors.  Decisions on what 
types of errors to be concerned about and to correct should be based on goals and 
analysis requirements.  Spending effort on ridding a dataset of all problems may not be 
necessarily for intended uses, and may create a set that is not appropriate for addressing 
some questions.  Keep in mind that some adjustment techniques may interfere with your 
intended analysis.  

(b) No cleaned-up dataset is free of assumptions about what its planned or perceived use is.  
Keep track of decisions made along the way and limitations arising as a consequence of 
these decisions and processing.  Test generated data for unintended emergent features, 
and that these aren’t going to create spurious results in the analysis stage. 

 
(3) Nonetheless, techniques for improving dataset utility can detect and correct data errors, 

biases, and artificial record inhomogeneities and infill missing observations. 
  

(4) Document achieved improvements, intended uses, and caveats for yourself and other users 
to understand what the dataset is good vs. inappropriate for.   
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Strategies for data analysis are: 

(5) Analyses must include statistical significance testing to have results that can be relied upon 
for understanding your system and for decision-making.  This is in addition to analyses 
being well designed and properly interpreted.  Descriptive and graphic techniques are 
valuable for exploring data, but ultimately these must lead to hypothesis generation and 
testing.  

 
(6) Statistical techniques make certain assumptions about input data.  For a given analysis, 

some methods have more relaxed requirements than others regarding statistical distribution, 
independence, and missing values, for example.  Keep track of the properties of your data 
with respect to analysis requirements – violating these will most likely give overestimated 
significance to your results. 

 
(7) Analytical tools can evaluate temporal and spatial patterns at different scales, including 

trends, oscillations, regime shifts, daily events, regional correlations, and hemispheric 
teleconnections. 

   
(8) Keep in mind that results contain uncertainties not assessed statistically.  Uncertainties 

external to an analysis will mean we’re likely to assign too much confidence to statistical 
results.  Sources of uncertainty include unresolved data issues, analysis limitations, and 
simplifying assumptions re natural systems that we use to guide our studies. 

Lastly: 

(9) Studies are most likely to be successful if driven by a sense for underlying mechanisms that 
connect ecosystems and species with climate.  This will provide more confidence in 
interpretation of analysis results beyond just their statistical basis, adding insights into the 
dynamics of park landscapes. 

 
 



Development and Analysis of Climate Datasets for Park Science     References 
 

Page 51

Acknowledgements 
Many thanks to John Gross, Stephen Gray, Mark Williams, Brent Frakes, Stacey Ostermann-Kelm, 
Cathie Jean, Chris Daly, Chris Knud-Hansen, Mark Otto, and anonymous reviewers for suggestions 
and comments.  Thanks also to Michael Hartman and Todd Ackerman who contributed to Niwot 
Ridge climate analyses presented in some of the figures.  This report was funded by the National 
Park Service, Rocky Mountains Cooperative Ecosystem Studies Unit (RM-CESU) in support of the 
Inventory and Monitoring Program.  This publication is in addition a contribution of the Niwot 
Ridge Long-Term Ecological Research (LTER) project funded by the National Science Foundation. 
 
 
References  
Alexander, L.V., et al. [23 coauthors].  2006.  Global observed changes in daily climate extremes of 
temperature and precipitation.  J. Geophys. Res. 111, D05109, doi:10.1029/2005JD006290. 
 
Allen, T.F.H., and T.B. Starr.  1982.  Hierarchy: Perspectives for Ecological Complexity.  Chicago: 
The University of Chicago Press.  310 p. 
 
Alley, W.M.  1984.  The Palmer Drought Severity Index: limitations and assumptions.  Journal of 
Climate and Applied Meteorology 23:1100-1109 
 
Banerjee, S., B.P. Carlin, and A.E. Gelfand.  2003.  Hierarchical Modeling and Analysis for Spatial 
Data. Monographs on Statistics and Applied Probability, Routledge.  472 p. 
 
Baron, J.S.  2006.  Hindcasting nitrogen deposition to determine an ecological critical load.   
Ecological Applications 16:433-439 
 
Barton, S.B., and J.A. Ramirez.  2004.  Effects of El Niño Southern Oscillation and Pacific 
Interdecadal Oscillation on water supply in the Columbia River Basin.  J. Water Resources 
Planning and Management 130:281-289.  doi:10.1061/(ASCE)0733-9496(2004)130:4(281) 
 
Beniston, M., and D. Stephenson.  2004.  Extreme climatic events and their evolution under 
changing climatic conditions.  Global and Planetary Change 44:1-9 
 
Billings, W.D. and L.C. Bliss.  1959.  An alpine snowbank environment and its effects on 
vegetation, plant development, and productivity.  Ecology 40:388-397 
 
Biondi, F., A. Gershunov, and D.R. Cayan.  2001.  North Pacific decadal climate variability since 
1661. J. Climate 14:5–10 
 
Biondi, F., T.J. Kozubowski, and A.K. Panorska.  2002.  Stochastic modeling of regime shifts. 
Climate Research 23:23–30 
 
Box, G.E.P., and G.C. Tiao. 1975.  Intervention analysis with applications to economic and 
environmental problems.  J. Amer. Stat. Assoc. 70:70–79 
 
Braswell, B.H., D.S. Schimel, E. Linder, B. Moore III.  1997. The Response of Global Terrestrial 
Ecosystems to Interannual Temperature Variability.  Science 278:870-873 



Development and Analysis of Climate Datasets for Park Science     References 
 

Page 52

 
Burnaby, T.P.  1953.  A suggested alternative to the correlation coefficient for testing the 
significance of agreement between pairs of time series, and its application to geologic data.  Nature 
172:210–211 
 
Burroughs, J.  2008.  Integrated Global Radiosonde Archive - Quality Control.  National Climate 
Data Center, NOAA.  Web document: 
http://www.ncdc.noaa.gov/oa/climate/igra/index.php?name=quality  
 
Cade, B.S., and B.R. Noon.  2003.  A gentle introduction to quantile regression for ecologists. 
Frontiers in Ecology and the Environment 1:412-420 
Castro, C.L., T.B. McKee, and R.A. Pielke, Sr.  2001.  The relationship of the North American 
monsoon to tropical and North Pacific sea surface temperatures as revealed by observational 
analyses. J. Climate 14:4449-4473 
 
Clark, I., and W.V. Harper.  2000.  Practical Geostatistics 2000.  Ecosse North America.  442 p. 
 
Chang, Y.S., D. Jeon, H. Lee, H.S. An, J.W. Seo, and Y.H. Youn.  2004.  Interannual variability 
and lagged correlation during strong El Niño events in the Pacific Ocean.  Climate Research 27:51-
58 
 
Chatfield, C.  1995.  Problem Solving: A Statistician's Guide, 2nd ed.  Chapman & Hall.  350 p. 
Available in part on Google Books: http://books.google.com/books?id=EA3jBSe0c3wC  
 
Chen, M., W. Shi, P. Xie, V.B.S. Silva, V.E. Kousky, R.W. Higgins, and J.E. Janowiak.  2008. 
Assessing objective techniques for gauge-based analyses of global daily precipitation.  J. Geophys. 
Res. 113, D04110, doi:10.1029/2007JD009132.  13 p. 
 
Christy, J.R., W.B. Norris, and R.T. McNider.  2009.  Surface temperature variations in East Africa 
and possible causes.  J. Climate 22:3342–3356 
 
CLIMAS.  2002.  Climate Divisions: to use or not to use?  END InSight, November 2002, p. 3-4. 
CLIMAS (Climate Assessment for the Southwest), University of Arizona.  
http://www.climas.arizona.edu/forecasts/articles/climdiv_nov2002.pdf  
 
Coles, S.  2001.  An Introduction to Statistical Modeling of Extreme Values.  Springer.  225 p. 
 
Conover, W.J.  1999.  Practical Nonparametric Statistics, 3rd ed.  Wiley.  584 p. 
 
Crawley, M.J.  2002.  Statistical Computing: An Introduction to Data Analysis using S-Plus.  Wiley.  
772 p. 
 
Crawley, M.J.  2007.  The R Book.  Wiley.  950 p. 
 
Cressie, N.A.C.  1993a.  Statistics for Spatial Data.  Wiley, New York.  928 p. 
 
Cressie. N.  1993b.  Aggregation in geostatistical problems.  In: Soares, A. (ed) Geostatistics Troia 
’92, Vol 1, pp. 25–36.  Kluwer Academic Publishers, Dordrecht. 

http://www.ncdc.noaa.gov/oa/climate/igra/index.php?name=quality
http://books.google.com/books?id=EA3jBSe0c3wC
http://www.climas.arizona.edu/forecasts/articles/climdiv_nov2002.pdf


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 53

 
Dai, A., K.E. Trenberth, and T.R. Karl  1998.  Global variations in droughts and wet spells: 1900-
1995.  Geophysical Research Letters 25(17):3367-3370 
 
Daly, C., W.P. Gibson, G.H. Taylor, G.L. Johnson, and P. Pasteris.  2002.  A knowledge-based 
approach to the statistical mapping of climate.  Climate Research 22:99-113  
http://www.prism.oregonstate.edu/  
 
Daly, C., W.P. Gibson, G.H. Taylor, M.K. Doggett, and J.I. Smith.  2007.  Observer bias in daily 
precipitation measurements at United States Cooperative Network Stations.  Bull. Amer. Meteor. 
Soc. 88:899–912. 
 
Daly, C., M. Halbleib, J.I. Smith, W. P. Gibson, M. K. Doggett, G.H. Taylor, J. Curtis, and P.P. 
Pasteris.  2008.  Physiographically sensitive mapping of climatological temperature and 
precipitation across the conterminous United States.  International Journal of Climatology 
28:2031-2064  http://www.prism.oregonstate.edu/ 
 
Delcourt, H.R., P.A. Delcourt, and T. Webb III.  1983.  Dynamic plant ecology: the spectrum of 
vegetation change in space and time.  Quat. Sci. Rev. 1:153-175 
 
Díaz, S.C., C.A. Salinas-Zavala, S. Hernandez-Vazquez.  2008.  Variability of rainfall from tropical 
cyclones in northwestern Mexico and its relation to SOI and PDO.  Atmósfera 21: 213 - 223 
 
Di Luzio, M., G.L. Johnson, C. Daly, J.K. Eischeid, and J.G. Arnold.  2008.  Constructing 
retrospective gridded daily precipitation and temperature datasets for the conterminous United 
States.  J. Appl. Meteor. Climatol. 47:475–497 
 
Doesken, N.J.  2005.  The National Weather Service MMTS (Maximum-Minimum Temperature 
System) -- 20 years after.  15th Conference on Applied Climatology and 13th Symposium on 
Meteorological Observations and Instrumentation.  Paper JP1.26.  America Meteorological Society, 
Boston.   http://ams.confex.com/ams/pdfpapers/91613.pdf    
 
Draper, N.R., and H. Smith.  1998.  Applied Linear Regression, 3rd ed. Wiley.  736 p. 
 
Drews, C.  2003.  Detecting Climate Change in Canadian Ice Data.  Research Paper, USDA 
Graduate School.  http://www.highestlake.com/canadice.html  
 
Easterling, D.R., T.R. Karl, E.H. Mason, P.Y. Hughes, D.P. Bowman, R.C. Daniels, and T.A. 
Boden.  1996.  United States Historical Climatology Network (US HCN) Monthly Temperature and 
Precipitation Data. ORNL/CDIAC-87, NDP-019/R3.  Carbon Dioxide Information Analysis 
Center, Oak Ridge National Laboratory. 
http://www.ncdc.noaa.gov/oa/climate/research/ushcn/ushcn.html.  Data access: 
http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html  
 
Easterling, D.R., B. Horton, P.D. Jones, T.C. Peterson, T.R. Karl, D.E. Parker, M.J. Salinger, V. 
Razuvayev, N. Plummer, P. Jamason, and C.K. Folland.  1997.  Maximum and minimum 
temperature trends for the globe.  Science 277:364-367 
 

http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
http://ams.confex.com/ams/pdfpapers/91613.pdf
http://www.highestlake.com/canadice.html
http://www.ncdc.noaa.gov/oa/climate/research/ushcn/ushcn.html
http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 54

Easterling, D.R., T.R. Karl, J.H. Lawrimore, and S.A. Del Greco. 1999.  United States Historical 
Climatology Network Daily Temperature, Precipitation, and Snow Data for 1871-1997. 
ORNL/CDIAC-118, NDP-070. Carbon Dioxide Information Analysis Center, Oak Ridge National 
Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.  
http://www.ncdc.noaa.gov/oa/climate/research/ushcn/ushcn.html.  Data access: 
http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html 
 
Easterling, D.R., J.L. Evans, P.Ya. Groisman, T.R. Karl, K.E. Kunkel, and P. Ambenje.  2000.  
Observed variability and trends in extreme climate events: a brief review.  Bulletin of the American 
Meteorological Society 81:417–425 
 
Eischeid, J.K., C.B. Baker, T.R. Karl, and H.F. Diaz. 1995.  The quality control of long-term 
climatological data using objective data analysis.  J. Appl. Meteor. 34:2787–2795 
 
Endoe, J.  2009.  The USHCN Version 2 Serial Monthly Dataset.  National Climate Data Center, 
NOAA.  http://www.ncdc.noaa.gov/oa/climate/research/ushcn/ 
 
Forchhammer, M.C., and E. Post.  2004.  Using large-scale climate indices in climate change 
ecology studies.  Population Ecology 46:1-12 
 
Frei, C., and C. Schär.  2001.  Detection probability of trends in rare events: Theory and application 
to heavy precipitation in the Alpine region.  Journal of Climate 14:1568-1584 
 
Fuentes, M., T.G.F. Kittel, and D. Nychka.  2006.  Sensitivity of ecological models to their climate 
drivers: Statistical ensembles for forcing.  Ecological Applications 16:99–116 
 
Gandin, L.S.  1988.  Complex quality control of meteorological observations.  Monthly Weather 
Review 116:1137-1156 
 
Garson, G.D.  2009.  Statnotes: Topics in Multivariate Analysis.  North Carolina State University 
http://www2.chass.ncsu.edu/garson/pa765/statnote.htm 
 
Gedalof, Z., and D.J. Smith.  2001.  Interdecadal climate variability and regime-scale shifts in 
Pacific North America.  Geophys. Res. Lett. 28:1515–1518 
 
Gedalof, Z., N.J. Mantua, and D.L. Peterson.  2002.  A multi-century perspective of variability in 
the Pacific Decadal Oscillation: new insights from tree rings and coral.  Geophys. Res. Lett. 29(24): 
2204, doi:10.1029/2002GL015824. 
 
Gershunov, A., and T. Barnett.  1998.  Interdecadal modulation of ENSO teleconnections.  Bulletin 
of the American Meteorological Society 79(12):2715-2725. 
 
Ghil, M., M.R. Allen, M.D. Dettinger, K. Ide, D. Kondrashov, M.E. Mann, A.W. Robertson, A. 
Saunders, Y. Tian, F. Varadi, and P. Yiou.  2002.  Advanced spectral methods for climatic time 
series. Rev. Geophys. 40(1), 1003, doi:10.1029/2000RG000092 
 

http://www.ncdc.noaa.gov/oa/climate/research/ushcn/ushcn.html
http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html
http://www.ncdc.noaa.gov/oa/climate/research/ushcn/
http://www2.chass.ncsu.edu/garson/pa765/statnote.htm


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 55

Gleason, K.L., J.H. Lawrimore, D.H. Levinson, T.R. Karl, and D.J. Karoly.  2008.  A revised U.S. 
Climate Extremes Index.  J. Climate 21:2124-2137 
http://www.ncdc.noaa.gov/oa/climate/research/cei/cei.html 
 
Goubanova, K., and L. Lia.  2007.  Extremes in temperature and precipitation around the 
Mediterranean basin in an ensemble of future climate scenario simulations.  Global and Planetary 
Change 57:27-42 
 
Graumlich L.J., M.F.J. Pisaric, L.A. Waggoner, J.S. Littell, and J.C. King.  2003.  Upper 
Yellowstone River flow and teleconnections with Pacific Basin climate variability during the past 
three centuries.  Climatic Change 59:245-262 
 
Gray, S. T., J. L. Betancourt, C. L. Fastie, and S. T. Jackson.  2003.  Patterns and sources of 
multidecadal oscillations in drought-sensitive tree-ring records from the central and southern Rocky 
Mountains.  Geophys. Res. Lett. 30(6):1316, doi:10.1029/2002GL016154.  4 p. 
 
Guttman, N. B.  1999.  Accepting the Standardized Precipitation Index: a calculation algorithm.  J. 
Amer. Water Resour. Assoc. 35(2):311-322 
 
Guttman, N., and R. Quayle. 1996.  A historical perspective of U.S. climate divisions.  Bulletin of 
the American Meteorological Society 77(2):293–304 
 
Haas, T.C.  1995.  Local prediction of a spatio-temporal process with an application to wet sulfate 
deposition.  J Am Stat Assoc 90:1189-1199 
 
Haimberger, L.  2007.  Homogenization of radiosonde temperature time series using innovation 
statistics.  J. Climate 20:1377–1403 
 
Hale, R.C., K.P. Gallo, T.W. Owen, and T.R. Loveland.  2006.  Land use/land cover change effects 
on temperature trends at U.S. Climate Normals stations.  Geophys. Res. Lett. 33, L11703, 
doi:10.1029/2006GL026358 
 
Hallett, T.B., T. Coulson, J.G. Pilkington, T.H. Clutton-Brock, J.M. Pemberton, and B. Grenfell.  
2004.  Why large-scale climate indices seem to predict ecological processes better than local 
weather.  Nature 430:71–75 
 
Hamed, K.H., and A.R. Rao.  1998.  A modified Mann-Kendall test for autocorrelated data.  J. 
Hydrology 204:182-196 
 
Hansen, J., R. Ruedy, J. Glascoe, and M. Sato.  1999.  GISS analysis of surface temperature change.  
J. Geophys. Res. 104(D24):30997-31022 
 
Hao, L., and D.Q. Naiman.  2007.  Quantile Regression.  Quantitative Applications in the Social 
Sciences, v. 149.  Sage Publications. 136 pp.  In part on Google Books:  
http://books.google.com/books?id=nKVBXePWtSoC 
 
Harcum, J.B., J.C. Loftis, and R.C. Ward.  1992.  Selecting trend tests for water quality series with 
serial correlation and missing values.  Water Resources Bulletin 28:469-478 

http://www.ncdc.noaa.gov/oa/climate/research/cei/cei.html
http://books.google.com/books?id=nKVBXePWtSoC


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 56

 
Hare, S.R. and N.J. Mantua.  2000.  Empirical evidence for North Pacific regime shifts in 1977 and 
1989.  Prog. Oceanogr. 47(2-4):103-146 
 
Heim, R.R.  2002.  A review of twentieth-century drought indices used in the United States.  Bull. 
Am. Meteorol. Soc. 83:1149−1165 
 
Helsel, D.R., and R.M. Hirsch.  2002.  Statistical Methods in Water Resources.  U.S. Geological 
Survey, Techniques of Water-Resources Investigations Book 4, Chapter A3.  
http://pubs.usgs.gov/twri/twri4a3/index.html  
 
Herring, D.  2007.  Earth’s Temperature Tracker.  Earth Observatory, NASA.  
http://earthobservatory.nasa.gov/Study/GISSTemperature/giss_temperature3.html  
 
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones, and A. Jarvis.  2005.  Very high resolution 
interpolated climate surfaces for global land areas.  Int. J. Climatol. 25:1965–1978. doi: 
10.1002/joc.1276 
 
Hirsch, R.M., and J.R. Slack.  1984.  A nonparametric trend test for seasonal data with serial 
dependence. Water Resources Research 20(6):727–732 
 
Hirsch, R.M., J.R. Slack, and R.A. Smith.  1982.  Techniques of trend analysis for monthly water 
quality data.  Water Resources Research 18:107-121 
 
Holling, C.S.  1992.  Cross-scale morphology, geometry and dynamics of ecosystems.  Ecol. 
Monogr. 62(4):447-502 
 
Hosking, J.R.M., and Wallis, J.R.  1997.  Regional Frequency Analysis: An Approach Based on L-
Moments.  Cambridge University Press, Cambridge, UK.  224 p.  Available in part on Google 
Books: http://books.google.com/books?id=OfB57wi7VcUC  
 
Hu, Q., and G.D. Willson.  2000.  Effects of temperature anomalies on the Palmer Drought Severity 
Index in the central United States.  Int. J. Climatol. 20, 1899-1911 
 
Hubbard, K.G., N.B. Guttman, J.S. You, and Z. Chen.  2007.  An improved QC process for 
temperature in the daily cooperative weather observations.  Journal of Atmospheric and Oceanic 
Technology 24:206-213 
 
Hurrell, J.W.  1996.  Influence of variations in extratropical wintertime teleconnections on Northern 
Hemisphere temperature.  Geophys. Res. Lett. 23:665–668. 
 
Hurrell, J.W., Y. Kushnir, G. Ottersen and M. Visbeck.  2003.  The North Atlantic Oscillation: 
Climatic Significance and Environmental Impact.  Geophysical Monograph Series.  American 
Geophysical Union, Washington, DC. 
 
Hutchinson, M.F.  1995.  Interpolating mean rainfall using thin plate smoothing splines. 
International Journal of Geographical Information Systems 9:385–403. 
 

http://pubs.usgs.gov/twri/twri4a3/index.html
http://earthobservatory.nasa.gov/Study/GISSTemperature/giss_temperature3.html
http://books.google.com/books?id=OfB57wi7VcUC


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 57

Hutchinson, M.F.  2004.  Anusplin Version 4.3.  Centre for Resource and Environmental Studies. 
The Australian National University: Canberra, Australia. 
 
Imbrie, J., E. Boyle, S. Clemens, A. Duffy, W. Howard, G. Kukla, J . Kutzbach, D. Martinson, A. 
Mcintyre, A. Mix, B. Molfino, J. Morley, L. Peterson, N. Pisias, W. Prell, M. Raytoo, N. 
Shackleton, and J. Toggweiler.  1992.  On the structure and origin of major glaciation cycles. 1. 
Linear responses to Milankovitch forcing.  Paleoceanography 7:701-738 
 
Imbrie, J., A. Berger, E. Bogle, S. Clemens, A. Duffy, W. Howard, G. Kukla, J. Kutzbach, D. 
Martinson, A. McIntyre, A. Mir, B. Molfino, J. Morley, L. Peterson, N. Pisias, W. Prell, M. Raymo, 
N. Shackleton, and J. Toggweiler.  1993.  On the structure and origin of major glaciation cycles. 2. 
The 100,000 year cycle.  Paleoceanography 8:699-735 
 
Karl, T.R., and R.W. Knight.  1985.  Atlas of Monthly Palmer Hydrological Drought Indices 
(1931–1983) for the Contiguous United States.  Historical Climatology Series 3-7, National 
Climatic Data Center, Asheville, North Carolina, USA. 
 
Karl, T.R., and C.N. Williams, Jr.  1987.  An approach to adjusting climatological time series for 
discontinuous inhomogeneities.  J. Climate Appl. Meteor. 26:1744-1763 
 
Karl, T.R., C.N. Williams, Jr., P.J. Young, and W.M. Wendland.  1986.  A model to estimate the 
time of observation bias associated with monthly mean maximum, minimum, and mean temperature 
for the United States.  J. Climate Appl. Meteor. 25:145-160 
 
Karl, T.R., H.F. Diaz, and G. Kukla.  1988.  Urbanization: its detection and effect in the United 
States climate record.  J. Climate 1:1099-1123 
 
Katz, R.W., and B.G. Brown.  1992.  Extreme events in a changing climate: Variability is more 
important than averages. Climatic Change 21:289–302 
 
Kestin T., D.J. Karoly, J.L. Yang, and N.A. Rayner.  1998.  Time-frequency variability of ENSO 
and stochastic simulations.  J. Climate 11:2258-2272  
 
Kharin, V.V., and F.W. Zwiers.  2000.  Changes in the extremes in an ensemble of transient climate 
simulations with a coupled atmosphere-ocean GCM.  J. Climate 13:3760–3788 
 
Kimball, S.L., B.D. Bennett, and F.B. Salisbury.  1973.  The growth and development of montane 
species at near-freezing temperatures.  Ecology 54:168-173 
 
Kirkman, T.W.  1996.  Statistics to Use.  College of Saint Benedict and Saint John's University. 
http://www.physics.csbsju.edu/stats/  
 
Kittel, T.G.F.  1990.  Climatic variability in the shortgrass steppe. Pp. 67-75, in: D. Greenland and 
L.W. Swift, Jr. (eds.).  Climate Variability and Ecosystem Response.  U.S. Forest Service, 
Southeastern Region. Gen. Tech. Rpt. SE-65 
 

http://www.physics.csbsju.edu/stats/


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 58

Kittel, T.G.F., N.A. Rosenbloom, J.A. Royle, C. Daly, W.P. Gibson, H.H. Fisher, P. Thornton, D. 
Yates, S. Aulenbach, C. Kaufman, R. McKeown, D. Bachelet, D.S. Schimel, and VEMAP2 
Participants.  2004.  The VEMAP Phase 2 bioclimatic database.  I:  A gridded historical (20th 
century) climate dataset for modeling ecosystem dynamics across the conterminous United States. 
Climate Research 27:151-170 
 
Kittel, T.G.F., T. Ackerman, M. Hartman, M.W. Williams, M.V. Losleben, and K. Chowanski.  
Elevational and seasonal dependence in recent climate change across an alpine and subalpine 
landscape in the Colorado Front Range, USA.   In preparation. 
 
Koenker, R.  2005.  Quantile Regression.  Cambridge University Press.  368 pp.   In part on Google 
Books: http://books.google.com/books?id=Xi_dTAeAmGcC  
Koenker, R., and F. Schorfheide.  1994.  Quantile spline models for global temperature change. 
Climatic Change 28: 395-404 
 
Kohler, M.A.  1949.  Double-mass analysis for testing the consistency of records and for making 
adjustments.  Bull. Amer. Meteor. Soc. 30:188–189 
 
Kondrashov, D., and M. Ghil.  2006.  Spatio-temporal filling of missing points in geophysical data 
sets.  Nonlin. Processes Geophys. 13:151-159 
 
Kondrashov, D., and M. Ghil.  2007.  Reply to T. Schneider's comment on “Spatio-temporal filling 
of missing points in geophysical data sets.”  Nonlin. Processes Geophys. 14:3-4 
 
Kulkarni, A., and H. von Stroch.  1995.  Monte Carlo experiments on the effect of serial correlation 
on the Mann-Kendall test of trend.  Meteorol. Z. 4(2):82-85 
 
Kvålseth, T.O.  1985.  Cautionary note about R2.  The American Statistician 39(4):279-285 
 
Labat, D.  2005.  Recent advances in wavelet analyses: Part 1. A review of concepts.  Journal of 
Hydrology 314:275-288 
 
Lane, D.L.  2007.  HyperStat Online Statistics Textbook. 
http://davidmlane.com/hyperstat/index.html 
 
Leffler, R., and K. Redmond.  2004.  PCU6 – Unit No. 2 Factors Affecting the Accuracy and 
Continuity of Climate Observations.  National Weather Service, NOAA.   40 p. 
http://www.weather.gov/om/csd/pds/PCU6/IC6_2/tutorial1/PCU6-Unit2.pdf (see corresponding 
tutorial at: http://www.weather.gov/om/csd/pds/PCU6/IC6_2/tutorial1/Factors.htm) 
 
Legates, D.R.  1995.  Global and terrestrial precipitation: A comparative assessment of existing 
climatologies.  International Journal of Climatology 15:237-258 
 
Lettenmaier, D.P., E.F. Wood, and J.R. Wallis.  1994.  Hydro-climatological trends in the 
continental United States, 1948-88.  J. Clim. 7:586-607 
 
Linkin, M.E., and S. Nigam.  2008.  The North Pacific Oscillation–West Pacific Teleconnection 
Pattern: mature-phase structure and winter impacts.  Journal of Climate 21(9):1979-1997 

http://books.google.com/books?id=Xi_dTAeAmGcC
http://davidmlane.com/hyperstat/index.html
http://www.weather.gov/om/csd/pds/PCU6/IC6_2/tutorial1/PCU6-Unit2.pdf
http://www.weather.gov/om/csd/pds/PCU6/IC6_2/tutorial1/Factors.htm


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 59

 
Makkonen, L.  2008.  Problems in the extreme value analysis.  Structural Safety 30:405–419 
 
Malmgren, B.A., A. Winter, and D. Chen.  1998.  El Niño–Southern Oscillation and North Atlantic 
Oscillation control of climate in Puerto Rico.  J. Climate 11:2713–2717 
 
Mann, M.E.  2004.  On smoothing potentially non-stationary climate time series.  Geophys. Res. 
Lett. 31, L07214, doi:10.1029/2004GL019569. 
 
Mantua, N.J., S.R. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis.  1997.  A Pacific interdecadal 
climate oscillation with impacts on salmon production.  Bulletin of American Meteorological 
Society 76:1069–1079 
 
Marchand, P.J.  1996.  Life in the Cold.  3rd ed.  University Press of New England, Hanover, NH.  
304 p. 
 
Marlon, J.R., P.J. Bartlein, M.K. Walsh, S.P. Harrison, K.J. Brown, M.E. Edwards, P.E. Higuera, 
M.J. Power, R.S. Anderson, C. Briles, A. Brunelle, C. Carcaillet, M. Daniels, F.S. Hu, M. Lavoie, 
C. Long, T. Minckley, P. J.H. Richard, A.C. Scott, D.S. Shafer, W. Tinner, C.E. Umbanhowar, Jr, 
and C. Whitlock.  2009.  Wildfire responses to abrupt climate change in North America.  Proc. 
National Academy of Science 106: 2519-2524.  Supporting information: 
www.pnas.org/cgi/content/full/0808212106/DCSupplemental 
 
Martinez-Yrizar, A., and J. Sarukhan.  1990.  Litterfall patterns in a tropical deciduous forest in 
Mexico over a five-year period.  Journal of Tropical Ecology 6(4):433-444 
 
Matsuo, T.  2005.  Nonstationary covariance modeling using wavelets.  Institute for Mathematics 
Applied to Geosciences (IMAGe), National Center for Atmospheric Research, Boulder CO. 
http://www.image.ucar.edu/GSP/Projects/ResearchNuggets.shtml#WaveletCovariance. 
 
McCabe, G.J., M.A. Palecki, and J.L. Betancourt.  2004.  Pacific and Atlantic Ocean influences on 
multidecadal drought frequency in the United States.  Proceedings of the National Academy of 
Sciences 101(12):4136-4141 
 
McDonald, J.H.  2009.  Handbook of Biological Statistics.  2nd ed.  Sparky House Publishing, 
Baltimore, Maryland.  http://udel.edu/~mcdonald/statintro.html and 
http://www.lulu.com/content/3862228  
 
McKee, T.B., N. J. Doesken, and J. Kliest.  1993.  The relationship of drought frequency and 
duration to time scales.  In: Proceedings of the 8th Conference of Applied Climatology, 17-22 
January, Anaheim, CA. American Meteorological Society, Boston, MA.  p. 179-184 
 
Mearns, L.O., R.W. Katz, and S.H. Schneider.  1984.  Extreme high temperature events: Changes in 
their probabilities with changes in mean temperature.  J. Climate Appl. Meteor. 23:1601–1613. 
 
Meehl, G.A., et al. [16 coauthors].  2000.  An introduction to trends in extreme weather and climate 
events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. 
Bull. Amer. Meteor. Soc. 81:413–416 

http://www.pnas.org/cgi/content/full/0808212106/DCSupplemental
http://www.image.ucar.edu/GSP/Projects/ResearchNuggets.shtml#WaveletCovariance
http://udel.edu/~mcdonald/statintro.html
http://www.lulu.com/content/3862228


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 60

 
Meek, D.W., and J.L. Hatfield.  1994.  Data quality checking for single station meteorological 
databases.  Agricultural and Forest Meteorology 69:85-109  
 
Menne, M.J., and C.N. Williams, Jr.  2005.  Detection of undocumented change points using 
multiple test statistics and composite reference series.  J. Climate 18:4271-4286 
 
Minobe, S.  1997.  A 50-70 year climatic oscillation over the North Pacific and North America. 
Geophysical Research Letters 24:683-686 
 
Minobe, S.  1999.  Resonance in bidecadal and pentadecadal climate oscillations over the North 
Pacific: Role in climatic regime shifts.  Geophys. Res. Lett. 26:855-858 
 
Minobe, S., and N. Mantua.  1999.  Interdecadal modulation of interannual atmospheric and oceanic 
variability over the North Pacific.  Progress in Oceanography 43:163–192 
 
Miranda, P.M.A., and A.R. Tomé.  2009.  Spatial structure of the evolution of surface 
temperature (1951–2004).  Climatic Change 93:269-284.  doi 10.1007/s10584-008-9540-8 
 
Muggeo, V.M.R.  2009.  Segmented: Segmented Relationships in Regression Models.  R Package. 
http://cran.es.r-project.org/web/packages/segmented/segmented.pdf  
 
PACN.  2008.  Climate Monitoring Protocol for the Pacific Island Network (PACN), Standard 
Operating Procedure (SOP) # 24: Data Analysis - Instructions for Graphs and Calculations.  
Version 1.0 (June 13, 2008).  Pacific Island Network, National Park Service, USDI.  11 p.  
Unpublished document. 
 
Palmer, W.C.  1965.  Meteorological Drought.  Research Paper No. 45, US Department of 
Commerce Weather Bureau, Washington, DC. 
 
Parlange, M.B., and R.W. Katz.  2000.  An extended version of the Richardson model for 
simulating daily weather variables.  Journal of Applied Meteorology 39:610-622 
 
Pederson, G., S. Gray, D. Fagre, and L. Graumlich.  2006.  Long-duration drought variability and 
impacts on ecosystem services: a case study from Glacier National Park, Montana.  Earth 
Interactions 10(1):1-28 
 
Peterson, E.W., and L. Hasse.  1987.  Did the Beaufort scale or the wind climate change.  J. 
Physical Oceanogr. 17:1071-1074 
 
Peterson, T.C., and D.R. Easterling.  1994.  Creation of homogeneous composite climatological 
reference series.  Int. J. Climatol. 14:671–679 
 
Peterson, T.C., et al.  1998a.  Homogeneity adjustments of in situ atmospheric climate data: A 
review.  Int. J. Climatol. 18:1493-1517 
 
Peterson, T.C., R. Vose, R. Schmoyer, and V. Razuvaëv.  1998b.  Global historical climatology 
network (GHCN) quality control of monthly temperature data.  Int. J. Climatol. 18:1169-1179 

http://cran.es.r-project.org/web/packages/segmented/segmented.pdf


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 61

 
Quayle, R.G., D.R. Easterling, T.R. Karl, and P.Y. Hughes.  1991.  Effects of recent thermometer 
changes in the cooperative station network.   Bull. Am. Meteorol. Soc. 72:1718-1724 
 
Redmond, K., G. McCurdy, and G. Kelly.  2008.  NPS Climate Data and Monitoring Options.  
Report to the National Park Service.  NPS Evaluation Report 20080518 / WRCC Report 08-01.  
Western Regional Climate Center, Reno, NV.  45 p. 
 
Rehfeldt, G.E., N.L. Crookston, M.V. Warwell, and J.S. Evans.  2006.  Empirical analyses of 
plant-climate relationships for the western United States.  International Journal of Plant Sciences 
167:1123-1150 
 
Richardson, C.W.  1981.  Stochastic simulation of daily precipitation, temperature and solar 
radiation.  Water Resources Research 17:182-190 
 
Rodionov, S.N., and J.E. Overland.  2005.  Application of a sequential regime shift detection 
method to the Bering Sea ecosystem.  ICES J. Mar. Sci. 62:328-332 
 
Running S.W., R.R. Nemani, and R.D. Hungerford.  1987.  Extrapolation of synoptic 
meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and 
photosynthesis.  Can. J. For. Res. 17:472-483 
 
Schlesinger, M.E., and N. Ramankutty.  1994.  An oscillation in the global climate system of period 
65-70 years.  Nature 367:723–726 
 
Schreuder, H.T., R. Ernst, and H. Ramirez-Maldonado.  2004.  Statistical Techniques for Sampling 
and Monitoring Natural Resources. Gen. Tech. Rep. RMRS-GTR-126. Fort Collins, CO: U.S. 
Department of Agriculture, Forest Service, Rocky Mountain Research Station. 111 p.  Available 
online: http://www.fs.fed.us/rm/pubs/rmrs_gtr126.html  
 
Schumm, S.A.  1991.  To Interpret the Earth: Ten Ways to be Wrong.  Cambridge University Press.  
133 p. 
 
Schwing, F.B., T. Murphree, and P.M. Green.  2002.  The Northern Oscillation Index (NOI): a new 
climate index for the northeast Pacific.  Progress in Oceanography 53:115-139 
 
Schwing, F.B., R. Mendelssohn, S.J. Bograd, J.E. Overland, M. Wang, and S. Ito.  2009.  Climate 
change, teleconnection patterns, and regional processes forcing marine populations in the Pacific. J. 
Mar. Syst.  doi:10.1016/j.jmarsys.2008.11.027 
 
Scott, A. and C. Wild.  1991.  Transformations and R2.  The American Statistician 45:127-129 
 
Şen, Z., and Z. Habib.  2000.  Spatial precipitation assessment with elevation by using point 
cumulative semivariogram technique.  Water Resources Management 14:311-325.  doi 
10.1023/A:1008191012044 
 
Sokal, R.R., and F.J. Rohlf. 1994.  Biometry.  3rd ed.  W.H. Freeman.  880 p. 
 

http://www.fs.fed.us/rm/pubs/rmrs_gtr126.html


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 62

Steinskog, D.J., D.B. Tjøstheim, and N.G. Kvamstø.  2007.  A cautionary note on the use of the 
Kolmogorov–Smirnov Test for normality.  Monthly Weather Review 135:1151–1157 
 
Stenseth, N.C. and A. Mysterud.  2005.  Weather packages: finding the right scale and composition 
of climate in ecology.  Journal of Animal Ecology 74:1195–1198  doi: 10.1111/j.1365-
2656.2005.01005.x 
 
Stenseth, N. C., A. Mysterud, G. Ottersen, J.W. Hurrell, K.-S. Chan, and M. Lima.  2002.  
Ecological effects of climate fluctuations.  Science 297:1292–1296 
 
Stenseth, N.C., G. Ottersen, J.W. Hurrell, A. Mysterud, M. Lima, , K.-S. Chan, N.G. Yoccoz, and 
B.  Ådlandsvik.  2003.  Studying climate effects on ecology through the use of climate indices: the 
North Atlantic Oscillation, El Niño Southern Oscillation and beyond.  Proceedings of the Royal 
Society of London, Series B 270:2087–2096 
 
Stephenson, A., and E. Gilleland.  2005.  Software for the analysis of extreme events: the current 
state and future directions.  Extremes 8:87-109 
 
Stephenson, D.  2002.  Estimation and attribution of changes in extreme weather and climate events.  
In: IPCC Workshop on Extreme Weather and Climate Events, 11-13 June 2002, Beijing.  
Presentation.  http://www.met.rdg.ac.uk/~han/Extremes/extreme1.pdf  
 
Steward, R.R.  2005.  The oceanic influence on North American drought.  Chapter in: Our Ocean 
Planet – Oceanography in the 21st Century.  Texas A&M University.  On-line textbook: 
http://oceanworld.tamu.edu/resources/oceanography-book/oceananddrought.html  
 
Stohlgren, T.J., T.N. Chase, R.A. Pielke, Sr., T.G.F. Kittel, and J. Baron.  1998.  Evidence that local 
land use practices influence regional climate, vegetation, and stream flow patterns in adjacent 
natural areas.  Global Change Biology 4:495-504 
 
Thompson, D.W.J., and J.M. Wallace.  2000.  Annular modes in the extratropical circulation. Part I: 
Month-to-month variability.  J. Climate 13:1000-1016 
 
Thornton, P.E., H. Hasenauer, and M.A. White.  2000.  Simultaneous estimation of daily solar 
radiation and humidity from observed temperature and precipitation: an application of complex 
terrain in Austria. Agricultural and Forest Meteorology 104:255-271 
 
Toews, M.W., P.H. Whitfield, and D.M. Allen.  2007.   Seasonal statistics: The 'seas' package for R.  
Computers and Geosciences 33:944-951 
 
Tomé, A.R., and P.M.A. Miranda.  2004.  Piecewise linear fitting and trend changing points of 
climate parameters.  Geophys. Res. Lett. 31:L02207.  doi:10.1029/2003GL019100 
 
Torrence, C., and G.P. Compo.  1998.  A practical guide to wavelet analysis.  Bull. Amer. Meteor. 
Soc. 79:61–78 
 
Trenberth, K.E. 1984.  Signal versus noise in the Southern Oscillation.  Monthly Weather Review 
112:326-332 

http://www.met.rdg.ac.uk/~han/Extremes/extreme1.pdf
http://oceanworld.tamu.edu/resources/oceanography-book/oceananddrought.html


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 63

 
Trenberth, K.E.  1997.  The definition of El Niño.  Bull. Am. Meteorol. Soc. 78:2771–2777 
 
Trenberth, K.E.  1998.  Atmospheric moisture residence times and cycling: Implications for rainfall 
rates with climate change.  Climatic Change 39:667-694 
 
Trenberth, K.E., and J.W. Hurrell.  1994.  Decadal atmosphere-ocean variations 
in the Pacific.  Climate Dyn. 9:303-319 
 
Trenberth, K.E., A. Dai, R.M. Rasmussen, and D.B. Parsons.  2003.  The changing character of 
precipitation.  Bull. Am. Meteorol. Soc. 84:1205–1217 
 
Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. 
Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden and P. Zhai.  2007.  Observations: surface and 
atmospheric climate change.  In:  Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. 
Averyt, M. Tignor and H.L. Miller (eds.).  Climate Change 2007: The Physical Science Basis. 
Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel 
on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA. 
 
Urban, D.L., R.V. O'Neill, and H.H. Shugart.  1987.  Landscape ecology.  Bioscience 37:119-127 
 
Verzani, J.  2004.  Using R for Introductory Statistics.  Chapman & Hall/CRC. 432 p.  In part on 
Google Books: http://books.google.com/books?id=jwolc192c5kC 
 
Verosub, K.L., and J. Lippman.  2008.  Global impacts of the 1600 eruption of Peru's Huaynaputina 
Volcano.  Eos 89:141-142 
 
von Storch, H., and F.W. Zwiers.  2001.  Statistical Analysis in Climate Research.  Cambridge 
University.  484 p.  In part on Google Books: http://books.google.com.br/books?id=5QgAfL1N6koC 
 
Vose, R.S., C.N. Williams Jr., T.C. Peterson, T.R. Karl, and D.R. Easterling.  2003.  An evaluation 
of the time of observation bias adjustment in the US Historical Climatology Network.  Geophysical 
Research Letters 30(20):2046, pp. CLM3-1 to 3-4.  doi:10.1029/2003GL018111. 
 
Wade, C.G.  1987.  A quality control program for surface mesometeorological data.  J. Atmos. 
Oceanic Technol. 4:435–453 
 
Wallace, J.M., and D.S. Gutzler.  1981. Teleconnections in the geopotential height field during the 
Northern Hemisphere winter.  Mon. Wea. Rev. 109:784–812 
 
Wessa, P.  2009.  Free Statistics Software (v1.1.23-r1).  Office for Research Development and 
Education, Resa Corporation R&D: http://www.wessa.net/  
 
Whitcher B., P. Guttorp, and D.B. Percival.  2000.  Wavelet analysis of covariance with application 
to atmospheric time series.  Journal of Geophysical Research-Atmospheres 105(D11):14941-14962 
 

http://books.google.com/books?id=jwolc192c5kC
http://books.google.com.br/books?id=5QgAfL1N6koC
http://www.wessa.net/


Development and Analysis of Climate Datasets for Park Science     References 
 

Page 64

Wilks, D.  2006.  Statistical Methods in the Atmospheric Sciences.  2nd ed.  Academic Press / 
Elsevier.  Available on-line: http://www.scribd.com/doc/7128720/Statistical-Methods-in-the-
Atmospheric-Sciences-Daniel-Wilks- 
 
Willett, J. B., and J. D. Singer.  1988.  Another cautionary note about R2: its use in weighted least-
squares regression analysis.  The American Statistician 42:236-238 
 
Willmott, C.J., C.M. Rowe, and W.D. Philpot.  1985.  Small-scale climate maps: a sensitivity 
analysis of some common assumptions associated with grid-point interpolation and contouring.  The 
American Cartographer 12:5-16 
 
Wolter, K., and D. Allured.  2007.  New climate divisions for monitoring and predicting climate in 
the U.S.  Intermountain West Climate Summary 3(5):2-6 (June 2007). 
http://wwa.colorado.edu/IWCS/archive/IWCS_2007_Jun.pdf  
 
Wolter, K., and M.S. Timlin.  1993.  Monitoring ENSO in COADS with a seasonally adjusted 
principal component index.  Proc. of the 17th Climate Diagnostics Workshop, Norman, OK, 
NOAA/N MC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of 
Oklahoma, pp. 52-57 
 
Wright, S.J.,  and O. Calderón.  2006.  Seasonal, El Niño and longer term changes in flower and 
seed production in a moist tropical forest.  Ecology Letters 9:35–44 
 
Yandell, B.S.  1997.   Practical Data Analysis for Designed Experiments.  CRC Press.  437 p.  In 
part on Google Books: http://books.google.com/books?id=K-e05Mrab0oC  
 
Yang, D., D. Kane, Z. Zhang, D. Legates, and B. Goodison.  2005.  Bias-corrections of long-term 
(1973-2004) daily precipitation data over the northern regions.  Geophysical Research Letters 
32:L19501, doi:10.1029/2005GL024057.  see also: 
http://www.uaf.edu/water/faculty/yang/bcp/index.htm 
 
Yiou, P., E. Baert, and M.F. Loutre.  1996.  Spectral analysis of climate data.  Surveys in 
Geophysics 17:619-663 
 
You, J.S., K.G. Hubbard, S. Nadarajah, and K. Kunkel.  2007.  Performance of quality assurance 
procedures on daily precipitation.  Journal of Atmospheric and Oceanic Technology 24:821-834 

http://www.scribd.com/doc/7128720/Statistical-Methods-in-the-Atmospheric-Sciences-Daniel-Wilks-
http://www.scribd.com/doc/7128720/Statistical-Methods-in-the-Atmospheric-Sciences-Daniel-Wilks-
http://wwa.colorado.edu/IWCS/archive/IWCS_2007_Jun.pdf
http://books.google.com/books?id=K-e05Mrab0oC
http://www.uaf.edu/water/faculty/yang/bcp/index.htm


Development and Analysis of Climate Datasets for Park Science     Tables & Figures 
 

Page 65

Tables 
 

Table 1.  An example of a plausibility limits table that can be used in basic validity checks (after Burroughs 2008).  
Limits are set to catch values not physically plausible; these are tailored for a given site (§ 3.3.1).  This is separate 
from screening for outliers which would employ tighter limits (§ 3.3.2). 

 
 

Item Valid Range 
Year 1954 - present 
Month 1 - 12 
Day 1 - last day in corresponding month 
Observation Hour 0 - 23 
Temperature -50 to +50  °C 
Precipitation 0 to 100 mm/day 
Dewpoint Depression 0 to 50 °C 
Wind Speed 0 - 100 m/s 
Wind Direction 0 - 360° 
etc.  

 
 
 
 
 

Table 2.  On-line resources for station metadata (indicated by an asterisk*; § 3.4.1) and monitoring and outlook 
products providing near-real time, regional context to park climates (§ 4.7). 

 
Source Web Entry Point 

*NOAA Regional Climate Centers  http://www.wrcc.dri.edu/rcc.html - links to all NOAA regional centers 
 e.g., for Western U.S. – http://www.wrcc.dri.edu/CLIMATEDATA.html  

 
*State Climatologists http://www.stateclimate.org/ 

 e.g., for Wyoming http://www.wrds.uwyo.edu/sco/climate_office.html  
 

NOAA Climate Prediction Center http://www.cpc.ncep.noaa.gov/ – Climate monitoring U.S., Pacific Islands, Global: 
 http://www.cpc.ncep.noaa.gov/products/monitoring_and_data/ 
 http://www.cpc.ncep.noaa.gov/products/precip/CWlink/  

NOAA National Climate Data Center http://www.ncdc.noaa.gov/ 
 http://www.ncdc.noaa.gov/oa/climate/research/monitoring.html 
 http://lwf.ncdc.noaa.gov/oa/climate/research/cag3/cag3.html  

 
National Integrated Drought 
Information System 

http://www.drought.gov/ 
 National Drought Mitigation Center – http://drought.unl.edu/ 

 
Natural Resource Conservation Service Snow course maps – http://www.wcc.nrcs.usda.gov/snowcourse/ 

 
Western Water Assessment http://wwa.colorado.edu/IWCS/index.html - Intermountain West climate summary 

 http://wwa.colorado.edu/forecasts_and_outlooks/forecasts.html - Links to other US 
climate-related websites  

 

http://www.wrcc.dri.edu/rcc.html
http://www.wrcc.dri.edu/CLIMATEDATA.html
http://www.stateclimate.org/
http://www.wrds.uwyo.edu/sco/climate_office.html
http://www.cpc.ncep.noaa.gov/
http://www.cpc.ncep.noaa.gov/products/monitoring_and_data/
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/
http://www.ncdc.noaa.gov/
http://www.ncdc.noaa.gov/oa/climate/research/monitoring.html
http://lwf.ncdc.noaa.gov/oa/climate/research/cag3/cag3.html
http://www.drought.gov/
http://drought.unl.edu/
http://www.wcc.nrcs.usda.gov/snowcourse/
http://wwa.colorado.edu/IWCS/index.html
http://wwa.colorado.edu/forecasts_and_outlooks/forecasts.html
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Table 3.  Web entry-point resources for major teleconnection patterns for United States and territories.  Sites give 
descriptions and maps for teleconnection patterns for annual and monthly surface climate variables; some sites also 
include teleconnections for extremes.  Oscillation abbreviations are given in the text § 4.8.1.  Some patterns are 
illustrated in Figure 24 (for NPI, ENSO, PDO, and AMO).  Data sources for oscillation indices are given in Table 
4.  A broader summary of Northern Hemisphere teleconnections is provided at: 
http://www.cpc.noaa.gov/data/teledoc/telecontents.shtml  

 
Teleconnection Pattern*† Web Resources 

ENSO teleconnections  http://www.cru.uea.ac.uk/cru/info/enso/  
 http://www.esrl.noaa.gov/psd/enso// – 

o http://www.esrl.noaa.gov/psd/enso//enso.climate.html 
o http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ENSO/composites/  
U.S. by climate region and state – 
o http://www.cpc.ncep.noaa.gov/products/monitoring_and_data/ENSO_connections.shtml 
U.S.: for climate extremes –   
o http://www.esrl.noaa.gov/psd/enso/climaterisks/  

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/us_impacts/ustp_impacts.shtml 
 http://www.cses.washington.edu/cig/pnwc/aboutenso.shtml   

o See PDO teleconnections for ‘combined PDO & ENSO effects’ 
 http://jisao.washington.edu/analyses0500/#enso  

 
PDO teleconnections 
 
 
 
 
 
 
 
 
& the related North Pacific Index 
(NPI)–Pacific/North American (PNA) 
teleconnections 

 http://www.atmos.washington.edu/~mantua/REPORTS/PDO/PDO_cs.htm; also Mantua et al. (1997) 
 http://www.cses.washington.edu/cig/pnwc/aboutpdo.shtml  

o Combined PDO & ENSO effects –  
 http://www.cses.washington.edu/cig/pnwc/clvariability.shtml 
 http://www.cses.washington.edu/cig/pnwc/compensopdo.shtml 

 http://jisao.washington.edu/analyses0500/#pdo  
 http://www.beringclimate.noaa.gov/data/BCinclude.php?filename=in_PDO  
 See AMO teleconnections for ‘combined AMO & PDO effects’ 

 
 NPI: see Trenberth and Hurrell (1994), Hurrell (1996) 
 http://jisao.washington.edu/data/pna/ 
 http://jisao.washington.edu/analyses0500/#pna 

 
 

NAM/AO & NAO teleconnections  http://jisao.washington.edu/analyses0500/#ao  
 http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml  
 http://nsidc.org/arcticmet/patterns/arctic_oscillation.html  
 http://www.ldeo.columbia.edu/res/pi/NAO/  
 http://www.cru.uea.ac.uk/cru/info/nao/  

 
AMO teleconnections  http://oceanworld.tamu.edu/resources/oceanography-book/oceananddrought.html 

o Includes combined AMO & PDO effects; also McCabe et al. (2004) 
 http://www.aoml.noaa.gov/phod/amo_faq.php 

 
Other Major Teleconnection Patterns – 

East Atlantic (EA) 
West Pacific (WP) 
East Pacific-North Pacific (EP-NP) 
Tropical/Northern Hemisphere (TNH) 
Pacific Transition (PT) 

 http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml 
 

 
* For creating custom teleconnection correlation maps, see: http://www.esrl.noaa.gov/psd/data/correlation/.122 
† For a glossary of terms related to circulation oscillations and teleconnections, see 

http://www.ucar.edu/news/backgrounders/patterns.shtml 
 
 

http://www.cpc.noaa.gov/data/teledoc/telecontents.shtml
http://www.cru.uea.ac.uk/cru/info/enso/
http://www.esrl.noaa.gov/psd/enso//
http://www.esrl.noaa.gov/psd/enso//enso.climate.html
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ENSO/composites/
http://www.cpc.ncep.noaa.gov/products/monitoring_and_data/ENSO_connections.shtml
http://www.esrl.noaa.gov/psd/enso/climaterisks/
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/us_impacts/ustp_impacts.shtml
http://www.cses.washington.edu/cig/pnwc/aboutenso.shtml
http://jisao.washington.edu/analyses0500/#enso
http://www.atmos.washington.edu/~mantua/REPORTS/PDO/PDO_cs.htm
http://www.cses.washington.edu/cig/pnwc/aboutpdo.shtml
http://www.cses.washington.edu/cig/pnwc/clvariability.shtml
http://www.cses.washington.edu/cig/pnwc/compensopdo.shtml
http://jisao.washington.edu/analyses0500/#pdo
http://www.beringclimate.noaa.gov/data/BCinclude.php?filename=in_PDO
http://jisao.washington.edu/data/pna/
http://jisao.washington.edu/analyses0500/#pna
http://jisao.washington.edu/analyses0500/#ao
http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml
http://nsidc.org/arcticmet/patterns/arctic_oscillation.html
http://www.ldeo.columbia.edu/res/pi/NAO/
http://www.cru.uea.ac.uk/cru/info/nao/
http://oceanworld.tamu.edu/resources/oceanography-book/oceananddrought.html
http://www.aoml.noaa.gov/phod/amo_faq.php
http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
http://www.esrl.noaa.gov/psd/data/correlation/
http://www.ucar.edu/news/backgrounders/patterns.shtml
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Table 4.  Hemispheric circulation oscillations indices and their online data sources for oscillations with significant 
teleconnections affecting the United States and territories.  Related oscillations are listed together.  The analysis 
variable that underlies each index is given in [brackets].  Several of the indices are plotted in Figure 23 (PDO, SOI, 
and MEI).  Links describing their US teleconnection patterns are listed in Table 3.  A complementary compilation 
of index sources is at: http://www.esrl.noaa.gov/psd/data/climateindices/list/. (Link to text § 4.8.1 and  4.8.2) 
 

Oscillation Circulation Indices  
[Analysis Variable]* 

Sources for Index Timeseries** 

El Niño / Southern 
Oscillation (ENSO) 

Niño Region 3.4 SST Index 
/ Oceanic Niño Index 
(ONI)152 [SST]  
 
Southern Oscillation Index 
(SOI) [SLP] 
 
Multivariate ENSO Index 
(MEI) [multivariate]* 
 

http://www.cgd.ucar.edu/cas/catalog/climind/Nino_3_3.4_indices.html 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml  
 http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml 

 
http://www.cgd.ucar.edu/cas/catalog/climind/soi.html 
http://www.cru.uea.ac.uk/cru/data/soi.htm  
 
http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/mei.html   
 http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html   

Pacific Decadal 
Oscillation (PDO)130 

PDO Index [SST]  
 
 
North Pacific Index (NPI)153 
[SLP]  

http://jisao.washington.edu/pdo/  
 http://jisao.washington.edu/pdo/PDO.latest 154 

 
http://www.cgd.ucar.edu/cas/jhurrell/npindex.html  
 

North Atlantic Oscillation 
(NAO)131 
 
 
Northern Annular Mode 
(NAM) /  
Arctic Oscillation (AO)155  

NAO Index [SLP] 
 
 
 
NAM Index [SLP] 
 
AO Index [1000mb ht] 
 

http://www.cgd.ucar.edu/cas/jhurrell/indices.html 156 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml  
http://www.cru.uea.ac.uk/~timo/projpages/nao_update.htm  
 
http://www.cgd.ucar.edu/cas/jhurrell/indices.info.html#nam  
 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml  

Atlantic Multidecadal 
Oscillation (AMO) 

AMO Index [SST] http://www.esrl.noaa.gov/psd/data/timeseries/AMO/   

* SST = sea surface temperatures, SLP = sea level pressure, ht = pressure surface height.  MEI is based on SLP, 
SST, surface wind, surface air temperature, and cloudiness anomalies. 
** Where more than one source is listed, it is generally because they use slightly different means to determine the 
index.  Note that some sites present both monthly and seasonal series for some indices.  I’ve attempted to list sites 
that keep index series up-to-date, but no guarantee. 

                                                 
152 Trenberth (1997) explains the difference between these similar indices based on Niño Region 3.4 SST’s: 
http://www.cgd.ucar.edu/cas/catalog/climind/.  SST’s in this region of the equatorial Pacific is a strong indicator of 
ENSO events, especially with respect to global teleconnections: 
http://www.ucar.edu/news/backgrounders/patterns.shtml#mno  
153 The North Pacific Index (NPI) reflects the PDO – not the second NPO pattern discussed in footnote 129 (Minobe and 
Mantua 1999).  Note that the NPI is negatively correlated with the PDO index. 
154 SST source data for this PDO Index changed in 1982 and 2002 – see data source notes (and graphic link at end of 
file). 
155 See discussion of Arctic/Antarctic Annular Modes at http://ao.atmos.colostate.edu/introduction.html and their indices 
at http://ao.atmos.colostate.edu/Data/index.html  
156 Hurrell lists an array of NAO indices, for a overview see: http://www.cgd.ucar.edu/cas/jhurrell/naointro.html  

http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://www.cgd.ucar.edu/cas/catalog/climind/Nino_3_3.4_indices.html
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
http://www.cgd.ucar.edu/cas/catalog/climind/soi.html
http://www.cru.uea.ac.uk/cru/data/soi.htm
http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/mei.html
http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
http://jisao.washington.edu/pdo/
http://jisao.washington.edu/pdo/PDO.latest
http://www.cgd.ucar.edu/cas/jhurrell/npindex.html
http://www.cgd.ucar.edu/cas/jhurrell/indices.html
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
http://www.cru.uea.ac.uk/~timo/projpages/nao_update.htm
http://www.cgd.ucar.edu/cas/jhurrell/indices.info.html#nam
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/


Development and Analysis of Climate Datasets for Park Science     Tables & Figures 
 

Page 68

Figures157 

Figure 1.  Workflow diagram laying out the overall process for developing and analyzing climate datasets.  Three 
key stages are: (a) problem formulation (covered in section § 2.0), (b) dataset development (§ 3.0), and (c) analysis 
and results interpretation (§ 4.0). Specific objectives and questions will dictate specific procedures for each stage.  
Not all boxes are covered in this report, such as variable estimation (‘Evaluate Models’ box), reporting, and 
program updating processes. (SOP =  standard operating procedure document.)  (Link to text § 1.2)

                                                 
157 N.B. Many figures are from copyrighted publications.  Permissions pending. 

(a) 

(b) 

(c) 
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Figure 2.  The relationship between characteristic temporal and spatial scales for (a) various geophysical processes 
in general,158 (b) atmospheric processes in particular (from von Storch and Zwiers 2001), and (c,d) terrestrial 
ecological processes.159  The blue oval in (a) roughly gives an alternate scheme for oceans from von Storch and 
Zwiers’s (2001); the green oval in (b) generally represents that for the terrestrial biosphere in (c).  Panel (d) gives a 
specific example for the behavior of large wading birds [the domain of this figure is indicated by the brown box in 
(c)].  Note that temporal and spatial axes are log10, and those in (b) are switched from those in (a,c,d).  (in a-d, 
color annotations added) 
 
Discussion. Regardless of the geophysical or ecological system, these figures show a positive log-log relationship 
between characteristic temporal and spatial scales for biogeophysical processes: larger processes take longer to 
operate.  How this relationship lays out is, however, system dependent, with little or no overlap in the time-space 
relationship for climate and ecological processes (b).  This means there is not a simple translation of variation in 
one system to the other at a given scale, but rather that there must be scale interactions.  Differences among time-
space relationships are illustrated in detail for ecological external forcings vs. internal processes by Urban et al. 
(1987; see also Delcourt et al. 1983).  (Link to text § 2.2) 

                                                 
158 Image from Water Cycle Study Group, 2001, Predictability of Variations in Global and Regional Water Cycles, Ch. 
3, in: A Plan for a New Science Initiative on the Global Water Cycle.  USGCRP. 
(http://www.usgcrp.gov/usgcrp/Library/watercycle/wcsgreport2001/wcsg2001chapter3.htm) 
159 Image from Sheehan, P., 1995, Assessments of Ecological Impacts on a Regional Scale, Ch. 14 in: SCOPE 53 - 
Methods to Assess the Effects of Chemicals On Ecosystems (http://www.icsu-
scope.org/downloadpubs/scope53/chapter14.html) 

(b) 
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ocean 
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Figure 3.  Types of errors often present in data from electronic sensors and other automated instruments (from 
Wade 1987). 
 
Discussion:  When errors carry the data outside of an expected dynamic range, they can be detected by 
straightforward screening techniques (e.g., plausibility tests, § 3.3.1).  Detection and correction of more subtle 
errors (with physically reasonable values), require more involved techniques (§ 3.3.2– 3.3.3).   
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Figure 4.  Illustrations of record outliers and different detection methods.  (a) Ice coverage for a lake in Ontario 
(from Drews 2003).  The circled outlier was manually detected.  While physically plausible, the outlier was 
rejected when a manual review of observations found that the record for the suspect year was incomplete.  (b) 
Tropospheric temperature record over Norway in 1984.  The outliers (spikes) passed physical plausibility tests but 
were detected and rejected using a temporal consistency test (from Burroughs 2008).  (c) Daily mean surface air 
temperature for Walnut Creek, CA.  Automated screening used day-dependent outlier detection limits (curves) 
based on record absolute daily maxima and minima – this identified a late fall outlier (indicated by the solid arrow).  
However, the method can be overly sensitive as it does not allow any leeway for new valid extremes.  Follow-on 
visual inspection showed that the outlier was temporally consistent with a week-long cold snap (dashed arrows 
show the trace of dailies leading down to and then up from the outlier) and so was not rejected (from Meek and 
Hatfield 1994; brown annotations added).  (d) The 1932 monthly temperature record for Linyi, China (dots) was 
automatically screened first with climatological limits based on 2.5 and 5 standard deviations (SD) from the 
longterm mean seasonal cycle (black curve; gray-shaded contours are 1 SD increments from the average).  
Depending on which SD threshold was exceeded, outliers were further evaluated for spatial consistency against 
observations from nearby stations and for temporal consistency.  Finally, flagged outliers were plotted for visual 
checks – if the datapoint was not clearly faulty, it was retained.  In this case, the September 1932 mean was 
identified as outlier (> 2.5 SD), but was confirmed as reasonable value by other stations’ records and was retained.  
(Hansen et al. 1999; figure from Herring 2007; brown annotations added)  (Link to text § 3.3.2) 

ºrecord absolute 
minimum value 

(b)

(d)
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(c) 
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Figure 5.  Time-of-observation bias.  Difference in March mean monthly temperature between daily 
minimum/maximum thermometer observations taken in the early morning vs. end of the afternoon (0700h vs. 
1700h local time).  (from Karl et al. 1986)  
 
Discussion:  Temperature bias due to time of observation is strongest for continental regions and in spring (as 
shown here) and late fall.  This geographic and seasonal pattern of high biases is related to the prevalence in the 
interior and in spring and fall of strong warm and cold fronts, which are linked to this bias (see text § 3.3.3).  
Morning-based records give monthly means consistently colder than afternoon ones by as much as 2ºC or greater.  
Over the last 50 years, U.S. reporting times have steadily shifted from late afternoon to early morning, contributing 
an artificial cooling tendency to uncorrected regional trends (Vose et al. 2003). 
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Figure 6.  Comparing records of nearby stations, illustrating issues with combining records.  Water-year (Oct-Sept) 
(a) mean temperature and (b) precipitation for two stations in the Colorado shortgrass steppe:  Grover, CO and the 
Central Plains Experimental Range (CPER) LTER (Long-Term Ecological Research Program) site.  (from Kittel 
1990; in a, brown annotation added) 
 
Discussion: The objective was to create a combined record for exploring longterm climate dynamics of the region.  
Three issues must be addressed: (1) station differences in means, (2) station differences in variance structure, and 
(3) degree of correlation in interannual variability.  For the period of overlap, the two sites track each other well 
until 1962 (correlation r = +0.71 for temperature, +0.77 for precipitation, p<0.01).  This correlation breaks down 
after 1962 (arrow) especially for temperature (entire overlap period 1949-69: r = +0.14, n.s.).  A check of the 
metadata for Grover revealed that the station was moved a significant distance in 1962.  A truncated overlap period 
(prior to the Grover station change, 1949-1962) was then used to evaluate station differences in annual means and 
standard deviations, which were not grossly different.  The long overlap permitted spectral analysis, which also 
revealed that variance structure was similar at sub- and multidecadal scales.  These results confirmed that the 
annual records could be combined (concatenated) by adjusting records based on differences in means and ratios of 
standard deviations.  (Link to text § 3.5). 
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Figure 7.  Accounting for a precipitation gauge change at a high elevation station in the Colorado Front Range.  A 
unshielded Belford gauge was replaced at the end of 1964 with a recording bucket gauge along with an Alter-type 
shield and a Wyoming fence to prevent wind-caused undercatch.  A 2-year overlap in instruments permitted the 
development of a correction factor, applied to the original data (dashed line) and reflected in the solid line (through 
1964).  (Kittel et al., in preparation) 
  
Discussion: The correction had a marked effect on the longterm trend analysis:  with correction, the trend 
decreased from +9.8 mm yr-1 yr-1 (p<10-5) to +6.3 mm yr-1 yr-1 (p<0.002).   (Link to text § 3.4) 

1964 1964 
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Figure 8.  Step changes in (a) maximum and (b) minimum temperature records in the mid-1980’s due to a change 
from liquid-in-glass thermometers to the electronic sensor Maximum/Minimum Temperature System (MMTS) 
(from Quayle et al. 1991).  Plotted values are the average timeseries across stations in the conterminous U.S., co-
registered to the time of the change over.   
 
Discussion:  Opposing step changes in Tmin and Tmax resulted in a severely reduced diurnal temperature range after 
the switch.  Such instrument artifacts severely interfere with climate trend assessments.  Quayle et al. (1991) 
presents bias correction factors to adjust records for this change.  (Link to text § 3.4.5) 
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Figure 9.  Urban heat island effect:  Evolution of differences in annual minimum temperature between stations in 
cities (1980 populations ≥100,000) relative to paired rural stations (populations <2,000) (N= number of pairs).  
(from Karl et al. 1988) 
 
Discussion:  The magnitude of the urban heating trend is substantial (~0.5ºC/80y), especially when compared to 
non-urban influenced global trends.  The urban effect is real, but is often removed from regional datasets designed 
to evaluate trends arising from other sources (e.g., the USHCN dataset17,59).  (Link to text § 3.4.7) 
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Figure 10.  Number of days missing per month in the precipitation record of a high elevation station in the 
Colorado Front Range (Niwot Ridge).  (Kittel et al., in preparation) 
 
Discussion:  The plot shows that the record is nearly complete with missing values well distributed – in particular, 
not concentrated at either end of the record which otherwise would raise the question of temporal biasing (§ 3.3.1).  
Missing values were infilled using adjacent instrument and nearby station records (§ 3.6).  
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Figure 11.  Spatial autocorrelation structure in monthly precipitation anomalies is dependent on heterogeneity in 
factors controlling climate, demonstrated here for two climate regions:  (a, b) in the Midwest where autocorrelation 
structure was strong and (c, d) in southern California where it was weak.  (a, c) Maps show a neighborhood (‘local 
window’) of 20 stations used to develop site correlograms shown in (b, d).  In (b, d), note that x-axis distance scales 
differ between these two figures (vertical double-headed arrows are placed at x=320 km to facilitate comparison).  
Site correlograms show correlations among all station pairs as a function of distance (dots), along with the best fit 
line from an exponential model.  (from Kittel et al. 2004; brown annotations added).  (Link to text: § 3.6.4) 
 
Discussion: The double arrows show that the spread of correlations at a distance of 320 km was greater for a more 
climatically heterogeneous California than for the more uniform Midwest.   
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Figure 12.  Time and station-density dependence in errors for the spatial (kriging) model in Figure 11.  (a) Time 
dependence in cross-validation errors for precipitation, expressed as mean squared error (MSE) for square-root 
transformed precipitation, is higher during periods of reduced station density in (b).  Cross-validation is where the 
model predicts a subset of observations withheld from the original analysis.  The decrease in station number after 
1990 was due to delayed updating of some national datasets.  (c,d) Visualization of the effects of station density on 
interannual variability of infilled station precipitation records created using the kriging model, for different climatic 
regions: (c) Midwest (Des Moines) and (d) the Mountain West (Bozeman).  The heavy horizontal bar in the upper 
right spans the period when observed data were available for the station.  (from Kittel et al. 2004; in d, brown 
annotation added) 
 
Discussion: Note in (a) that the model is relatively robust to station density change:  average precipitation errors 
roughly doubled from recent decades back to the early part of the record (MSE = 1.3 to 2.5 mm/mo), corresponding 
to a nearly 10-fold decrease in station numbers across the domain (in b).  In (d), interannual variability was 
artificially reduced during the early part of reconstructed records for areas where station densities were depleted, as 
around Bozeman.  This is a consequence of the model generating overly smoothed spatial fields when there were 
too few station observations to adequately capture regional variability.  As station density drops, the process 
reached farther away from a site to find predictor stations and blended unrelated anomaly patterns from adjacent 
regions to make a point’s prediction.  Poorly-related anomalies tended to counter each other, diminishing overall 
variance in reconstructed timeseries.  This is not an issue with infilled series for regions where stations densities 
were sufficiently high early in the record, for example, in the Midwest (in c).  (Link to text § 3.6.5)
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Figure 13.  The effects of applying a missing-value method at different temporal resolutions on the annual 
precipitation record at a high elevation station in the Colorado Front Range (Figure 7, Figure 10) for 1965-1999.  
The long-standing technique was to infill monthly precipitation for months with missing days using monthly 
correlations with nearby stations (dashed curve).  Later, the same spatial method was repeated but applied at a daily 
timestep based on daily correlations (solid curve).  (Kittel et al., in preparation) 
 
Discussion: While infilling method did not change the significance of longterm trends (both nonsignificant, n.s.), 
the daily method produced a markedly different series.  Differences in infilled data were accumulated over the year 
and were due to the daily model being able to select different stations for the regression on a daily basis, rather than 
just one to represent a month.  The daily-method timeseries was taken to be more true to the station record as it 
preserved more of the observed data.  (Link to text § 3.6.5) 
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Figure 14.  A longitude-time section plot72 of the Palmer Drought Severity Index (PDSI) for August for the 
conterminous United States (from Kittel et al. 2004; brown annotations added).  Vertical axis is time (year), 
horizontal axis is longitude (°W).  Mapped values are latitudinal (north-south) averages for a given year and 
longitude, and smoothed using a 7-year running average.  Longitude labels: Pacific = Pacific states, G Basin = 
Great Basin, Rockies = Rocky Mountains, G Plains = Great Plains, C Lowlnds = Central Lowlnds, Appls = 
Appalachians, Atlantic = Atlantic Coastal Plain, N Eng = New England. 
 
Discussion:  The longitude-time section plot shows how droughts (yellow-deep orange) in the far western and 
central US developed in the 1920’s, intensified and merged in the 1930’s, and then rapidly dissipated.  (Links to 
text: section plots § 4.1.2, PDSI § 4.2.2) 
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Figure 15.  Temporal smoothing revealing decadal and longer-period oscillatory behavior.  (a) Timeseries of the 
pervasiveness of cold-season climate extremes across the conterminous United States, as represented by the 
aggregate Climate Extremes Index (CEI, from Gleason et al. 2008; § 4.6.2).160  Bars are yearly values, smoothed 
curve is a 5-year centered moving average, and black horizontal line is the period average.  The value of CEI is the 
percent of the three dimensional time-space domain (season × region) experiencing extreme climate.  The 
occurrence of extreme climate is based on any of five thermal and moisture measures exceeding their upper or 
lower 10%-tiles.  (b) Weights used in IPCC WG1’s centered low-pass 13-year moving filter (figure created from 
data in Trenberth et al. 2007).  The 13 weights have numerators {1-6-19-42-71-96-106-96-71-42-19-6-1} and a 
denominator of 576.  (c) 1850-2005 tropical Atlantic sea surface temperature annual anomalies (bars) and 
smoothed curve (thick line) using weights in (b) designed to remove less than decadal scale fluctuations (from 
Trenberth et al. 2007).  At the end points, where 13 points are not longer available to the filter, the smoothed line is 
constrained by minimizing its slope (Mann 2004; see text § 4.5.1).  

 
Discussion: In (a), the smoothed timeline suggests that the cold-season extremes index varies with a period of 
roughly 20 years.  In (c), the low-pass filter curve suggests several scales of quasi-periodic behavior with decadal 
and longer periods.  In both cases (a, c), the next step would be to evaluate the original series using spectral 
techniques (§ 4.5.2).  (Link to text § 4.5.1) 

                                                 
160 http://www.ncdc.noaa.gov/oa/climate/research/cei/cei.html    
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Figure 16.  Multiyear temporal pattern analysis.  (a) Spectral analysis of the Southern Oscillation Index (SOI; § 4.8, 
Figure 23b) (from Ghil et al. 2002; brown annotations added).  Spectral power is plotted on the y-axis.  The bottom 
x-axis is frequency (1/month), converted to period (months) along the top x-axis.  The uppermost smoothed line is 
the 99% confidence level, and below that, the 95% confidence level.  (b) Regime shift detection in the Pacific 
Decadal Oscillation (PDO; § 4.8, Figure 23a) for winter (from Rodionov and Overland 2005; brown annotations 
added).161  Top vs. bottom panels show a sensitivity to detection model parameters  
 
Discussion: At interannual or lower frequencies [left end of the spectrum in (a)], three peaks exceed the 99% level.  
Those marked 0.015 and 0.034 cycle/month correspond to dominant modes of the SOI, with periods spanning 2-6 
years.  The third, left-most peak is the longterm trend.  (Link to text § 4.5.2)   In (b: top), two major regime shifts 
are detected in North Pacific climate dynamics over the last century: in 1946 and more recently in 1977 (marked by 
vertical arrows).  Smaller, less persistent shifts were detected with relaxed cutoff-length thresholds in the regime 
shift analysis, including a warm-to-cold shift in 1989 (b: bottom).  These two recent shifts (1977, 1989) are 
consistent with shifts in an array of abiotic and biotic measures across the northeastern Pacific (Hare and Mantua 
2000; see also § 4.8.1, § 4.8.2).  (Link to text § 4.5.3) 

 
 

                                                 
161 Image from: http://www.beringclimate.noaa.gov/data/BCinclude.php?filename=in_PDO.  Model parameters: p target 
significance level, l cutoff length (years), h Huber weight parameter, and AR1 autoregressive parameter are noted in 
links to specific images and described in Rodionov and Overland (2005). 
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Figure 17.  Evaluating the frequency of events.  Frequency distribution of (a) daily Tmin and Tmax for Wheatland, 
WY by 10ºF (~6ºC) bins, (b) tornados in Wyoming by month of the year, and (c) precipitation duration by hours 
per day bins for four stations in Wyoming.162   
 
Discussion: The occurrence of these three kinds of weather events is evaluated by binning by event magnitude (a, 
c) or timing (b).  In (a) minimum temperatures (blue bars) at Wheatland are slightly negatively skewed, with a 
stretched out distribution of the most extreme cold events.  Maximum temperatures (red bars) are more broadly 
distributed, but note that the bins are truncated at the high end (>100ºF), so the distribution of extreme maxima 
cannot be evaluated.  Here, there is a suggestion of bimodal structure, which might reflect two separate (perhaps 
seasonal) processes, warranting further analysis.  In (b), the seasonal distribution of tornados is slightly positively 
skewed, with more occurrences loaded up at the beginning of the warm season.  This distribution is consistent with 
our understanding that strong gradients in temperature and/or moisture – most often occurring in late spring 
through early summer – are precursors for tornado development.  For (c), as is characteristic for dry climates, 
precipitation events are highly concentrated on the short-duration end and are primarily less than one hour, yet with 
some full-day (or perhaps longer) events.  Cheyenne appears to have more very short events, Lander more longer 
events – this difficult could be tested with a Kolmogorov-Smirnov identical distribution test (§ 4.6.3).  (Link to text 
§ 4.6.1)

                                                 
162 Images from Wyoming Climate Atlas, http://www.wrds.uwyo.edu/sco/climateatlas/title_page.html, 17 Oct 2008 
update. 
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Figure 18.  Structure of daily weather events as illustrated by notch plots.  Plots are for January (left panel) 
precipitation and (right) minimum temperature from daily station records and daily weather model simulations for 
selected points (from Kittel et al. 2004; brown annotation added).  The daily weather model was WGEN (§ 3.6.7).69  
Points are in central Texas (TX), southern Minnesota (MN), western Colorado (CO), and northwestern Kansas 
(KS).  Record length (years) is indicated in parentheses after each location.  Notch plots show median (center of 
notch), standard deviation (white area = 2 SD), interquartile range (IQR; dark boxes around median, spanning 25 to 
75% of values), data range (brackets), and outliers (bars beyond the brackets; defined as values > +1.5 IQR or < –
1.5 IQR).  Precipitation is for wet days (only non-zero values are included) and is plotted in natural-log space 
(though note, y-axis tick labels are in original precipitation units, mm/day).  Box plots present the same distribution 
information but show the median without the standard deviation ‘notch.’   
 
Discussion: This graphic analysis shows that daily precipitation event size distribution is similar for both Texas and 
Minnesota stations with the median size and distribution set slightly higher at the Texas site.  The distributions are 
symmetrical in natural-log space, meaning in linear space that the distributions have long tails on the high end.  
Both sites are characterized by many small («0.4 mm/day) outlier events.  The daily minimum temperatures 
distribution for the Colorado and Kansas stations are similar, both asymmetrical with a broader distribution above 
the median than below.  Relative to the Kansas site, the Colorado station has a distribution overall shifted towards 
lower minimum temperatures, a less broad IQR, and a few high outliers over the 82-year record.  (Link to text § 4.6)  
The frequency distribution of WGEN-simulated values strongly follows observed (§ 3.6.7).  

 
 

IQR 
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Figure 19.  Historical changes in temperature and precipitation event frequency.  (a, b) Global change in the 
occurrence of high extreme daily Tmin (‘warm nights’), defined as Tmin’s in the top 10% of observations: (a) days 
with warm nights by year and (b) the frequency distribution of the percent-of-year with warm nights based on 202 
stations, evaluated for 3 successive multidecadal periods (from Trenberth et al. 2007, based on Alexander et al. 
2006; brown annotations added).  Smoothed line in (a) is a 21-term filter.163  (c, d) Frequency of precipitation over 
the conterminous United States (for all but the smallest events, ≥ 0.1 mm/hour) (from Trenberth 1998): (c) January 
precipitation frequency (percentage of hours with precipitation) and (d) historical trend in winter precipitation 
frequency (change in precipitation hours per decade) over the period 1963–1994.  In (c), areas with less than 8% of 
hours are stippled and greater than 16% are hatched (contour interval=2%).  In (d), negative trends are shown with 
dashed contour lines (in the Southeast and Pacific Northwest) and zero or positive change with solid contours 
(contour interval=4 hours/decade; brown -0- contour labels added).  Areas with trends that are statistically 
significant (at 5% level) are stippled. 
 
Discussion:  In (a) – on a global basis, the number of days with warm nighttime temperature extremes increased 
from the early part of the 20th century to the beginning of the present one.  The resulting greater portion of the year 
experiencing warm nights is expressed in (b) in terms of both a positive shift (horizontal arrow) in and a 
broadening of the frequency distribution of the % of year with warm nights.  The next step would be to evaluate 
changes in the frequency timeseries (a) using trend analysis (§ 4.3), while changes in the frequency distribution (b) 
could be analyzed using identical-distribution tests (§ 4.6.3).  Winter U.S. precipitation frequency [shown for 
January in (c)] is greatest in the Southeast and Pacific Northwest and low throughout the continental interior.  (d) 
shows statistically significant late 20th century changes in this pattern, with precipitation frequency reduced most 
strongly in the northern U.S. Rockies and enhanced broadly across the Southern Great Plains and into the 
Southwest.  (Link to text § 4.6)

                                                 
163 http://hadobs.metoffice.com/hadcrut3/smoothing.html 
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Figure 20.  (a) Cumulative probability function (dashed line; right x-axis scale) for a binomial relative frequency 
distribution function (solid line; left axis).  (b) Comparison of two theoretical binomial curves with narrow (dashed 
lines) vs. broad (solid lines) dispersion, plotted as both relative frequency (simple lines) and cumulative (lines with 
symbols) functions.  The cumulative probability curves are significantly different (p=0.03, Kolmogorov-Smirnov 
identical distribution test, ‘KS-test’ – evaluated with an online calculator115).  (c) Comparison of empirical 
cumulative functions for two sets of observations with similar means (t-test, nonsignificant at p>>0.05) but with 
strongly differing variances, resulting in statistically different distributions (KS-test, p=0.023).  D is the maximum 
vertical deviation between the two curves and is the Kolmogorov-Smirnov test statistic (from Kirkman 1996; 
brown annotation added).164  (d) Comparison of Beaufort force shipboard wind records in the English Channel for 
successive multidecadal periods.  The frequency distribution of observations pre-1900 (open circles) was 
significantly different from subsequent records through 1939 (open squares and closed circles) (KS-test, p<0.01) 
(from Peterson and Hasse 1987; brown annotation added). 
 
Discussion:  The two cumulative distributions in (c) have similar means (at x=0).  However, just as in the 
theoretical example (b), the dispersion of observations in (c) about the mean is much stronger for one set of 
observations (dashed curve, which starts earlier and climbs more slowly) than the other (solid curve).  The 
significance of this difference is confirmed with the KS-test.  In (d), the KS-test allowed Peterson and Hasse (1987) 
to identify a significant distribution shift in the Beaufort force record after 1899 – they suggest this maybe an 
artifact of a shift from sailing to steam ships at the end of the 19th century, perhaps related to concomitant changes 
in navigation and observer habits.  (Link to text § 4.6.3) 

                                                 
164 Image from: http://www.physics.csbsju.edu/stats/KS-test.html 
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Figure 21.  Spatial analyses showing regional connections.  (a) Point-covariance map for surface ozone of the 
eastern U.S. between the grid point indicated by the red dot (in northeast Ohio) and the rest of the domain (from 
Matsuo 2005).  Covariance units are [(ppb O3)2].  (b-e) Spatial autocorrelation model of monthly precipitation 
across the Central and Southern Rocky Mountains (Colorado is the state in the center of all maps).  (b) Stations 
used in the analysis.  (c) Semivariogram (mm/mo)165 vs. spatial separation (km) at a given time, February 1996 – 
showing increasing differences (spatial variance) in precipitation between stations as inter-station distance 
increases.  (d) Map of July 1996 precipitation semivariograms across the region at a set distance, 40km [marked 
with a dotted line in (c)].  Areas with lower semivariogram values have stronger spatial connectivity.  (e) 
Topographic relief166 for the domain in (b, c, d).  (b-d from Fuentes et al. 2006; brown annotations added) 
 
Discussion.  Point-covariance map (a) shows the spatial extent of sites that have a strong correlation in time with 
the focus site’s ozone dynamics.  The text (§ 4.7.1) discusses this type of presentation in terms of point-correlation 
maps, which impart the same information – recall that covariances and correlations are directly related.167  (c) and 
(d) show how monthly precipitation at any place in the domain is related to that of the surrounding region: in (c) as 
a function of distance between stations – spatial variance increases as spacing increases, and in (d) as a function of 
location within the domain – spatial variance is generally higher in regions with highest topographic heterogeneity 
(in e).  We also see in (d) that the semivariogram at 40km is anisotropic, i.e., that spatial correlation depends on 
compass direction.  (Link to text § 4.7.2) 

                                                 
165 Note re units: Units for semivariance are the square of the variable’s units.  In this example, however, semivariance 
units are ‘mm’ rather than ‘square mm’ because precipitation was first square-root transformed to better meet analysis 
requirements. 
166 Image from Jones et al., 1996, Nature 381:37-41. http://cires.colorado.edu/people/jones.craig/GSA/slide1l_big.JPG 
167 Correlation(x,y) = covariance(x,y)/[SD(x)*SD(y)]  
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Figure 22.  Cross-spectral Fourier analysis of two oceanic regional paleoclimate proxies, 18O and 13C isotopic 
variables.  (a) Power spectra for the two individual timeseries, (b) their spectral coherence (h2), and (c) phase.168  
Significance levels (5 and 20%) for coherence peaks are shown in (b).  In (c), confidence intervals (C.I.; vertical ‘I’ 
bars) for the phase of major coherence peaks in (b) test if the phase is significantly different from 0º.  Phase is 
presented in terms of degrees, with cycles defined as in phase at 0º and of opposite phase at 180º.  In x-axis 
frequency and period units, ‘ky’=103 years.  Analysis bandwidth is shown in the upper right (‘bw’=0.01/ky). 
 
Discussion:  The two climate proxy records share significant coherent (b) and in-phase (c) spectral power at 
periods of ~40 and ~100ky.  Coherence values for these peaks (h2 ≥ 0.80) indicate that 80% or more of variance in 
these frequencies is shared (§ 4.7.3).  In c, note that their C.I. bars extend to 0º.  The periods of these peaks in ocean 
regional climate proxies suggest climate links with Earth orbital dynamics as they closely correspond to 
Milankovitch orbital parameter cycles for tilt (41ky) and eccentricity (100ky; Imbrie et al. 1992, 1993).  (Link to 
text § 4.7.3) 

                                                 
168 Image from:  McDuff, R.E., and G.R. Heath.  2001.  Phase Relationships of Proxy Variables.  Oceanography 540. 
Marine Geological Processes.  Course web page.  University of Washington, School of Oceanography.  
http://www2.ocean.washington.edu/oc540/lec01-26/  (brown x-axis labels added) 

       100    50           25           16.7       12.5  
Period (ky) 

 100ky   40ky 

(a) 

(b) 

(c) 



Development and Analysis of Climate Datasets for Park Science     Tables & Figures 
 

Page 90

Figure 23.  Hemispheric climate oscillations’ spatial and temporal signatures:  (a) The Pacific Decadal Oscillation 
(PDO) characteristic warm (top left panel) and cool (right) phase conditions across the Pacific: wintertime anomaly 
patterns in sea surface temperature (SST; color zones, ºC), sea level pressure (SLP, contours) and surface 
windstress (arrows).  (Bottom) PDO Index monthly timeseries (standardized SST anomalies for the first principal 
component, § 4.8.2).169  (b) El Niño-Southern Oscillation (ENSO) timeseries since 1950 for two indices: Southern 
Oscillation Index (SOI; based on SLP anomalies) and Multivariate ENSO Index (MEI; based on SLP, SST, surface 
wind, surface air temperature, and cloudiness anomalies).170  Plots are presented with the x-axes’ year scales lined 
up.  The plots in (b) illustrate two different approaches to data blocking: (top panel) High magnitude SOI events are 
selected using a threshold, (bottom) MEI is blocked by PDO cold vs. warm regime, which shifted after 1976 
(vertical dashed line).  For timeseries in both (a) and (b), blue = cool phase, red/orange = warm phase [note in (b) 
that SOI phases are of opposite sign than El Niño/La Niña (warm/cold) temperature anomalies].  (In a-b, brown 
annotations added) 
 
Discussion:  PDO phases are termed ‘warm’ and ‘cool’ (or ‘cold’) based on SST anomalies in central tropical to 
northeast extratropical Pacific (off of North American west coast) (a, top).  Wind anomalies reverse directions in 
phase with temperature shifts.  The PDO Index timeseries (a, bottom) shows the multidecadal persistence of these 
phases, with regime shifts following 1946 and 1976 (arrows along x-axis; see Figure 16b).  In (b), note that the two 
ENSO indices capture the main events, though their relative structures vary.  Both indices show the prevalence of 
cold ENSO events during the PDO’s cold regime and warm ENSO in the PDO’s warm regime – a pattern that 
suggests constructive interference between the two dynamics (Biondi et al. 2001). (Link to text § 4.8.1) 

 
 

                                                 
169 Images from: http://jisao.washington.edu/pdo/ (timeseries through September 2009, periodically updated) 
170 SOI image from: http://www.cgd.ucar.edu/cas/catalog/climind/soi.html (Trenberth 1984).  MEI image from 
http://www.intellicast.com/Community/Content.aspx?ref=rss&a=126 (Wolter and Timlin 1993) through November 
2006 – to this image is appended updated series through October 2009 from 
http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/mei.html. 
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Figure 24.  Pacific Ocean Basin teleconnections to conterminous U.S. and Alaskan climates.  (a) Teleconnection 
correlation maps for January-March precipitation for the U.S. Four Corners region with (top) the North Pacific 
Index (NPI) and (bottom) Niño 3.4 Index (for 1958-1999 and 1950-1999, respectively).  Warm colors = positive 
correlation, cold colors = negative.  Plots generated on-line: http://www.esrl.noaa.gov/psd/data/correlation/.  (b) 
Teleconnections for conterminous U.S. drought frequency as a function of the interaction between phases (+/–) of 
the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO): blue areas = fewer droughts 
than normal, red = more (McCabe et al. 2004; image from Steward 2005, brown annotations added).  (c) Mean 
annual temperature departure for Alaska (1949-2008) showing a dramatic shift in the late 1970’s corresponding to 
the 1976/77 PDO regime shift (Figure 23a).171 

 
Discussion:  The negative correlation field in (a, top) indicates that a negative NPI in January-March corresponds 
to high precipitation into the American Southwest and Colorado River Basin.  The underlying mechanism is that a 
negative NPI means a strong, deep Aleutian Low – this forces the mid-latitude jet stream and embedded winter 
storms to track farther south coming into North America, bringing moisture directly to the Southwest.  In (b), these 
dynamics are similarly reflected in PDO teleconnections – negative NPI generally correspond to warm phases of 
the PDO (‘+PDO’) and so giving wetter conditions in the Southwest (b, top) than under –PDO (b, bottom).  In (a, 
bottom), the warm SST phase of ENSO (positive Niño 3.4 Index) is positively related to Southwest precipitation in 
January-March.  Warm SST’s in the eastern Pacific are linked to greater rainfall in the eastern tropical Pacific and a 
weakened Subtropical High off the coast of northern Mexico – these lead to more precipitation in northern Mexico 
and the American Southwest.  In (b), the +AMO phase brings drought across far more of the conterminous U.S. 
than under –AMO (right vs. left panels).  However, which regions are affected by this drought is strongly 
determined by PDO phase.  During the –PDO phase, when the Aleutian Low is weak, the mid-latitude jet stream is 
more zonal (following latitude lines) and brings moisture directly into the Pacific Northwest – keeping the +AMO 
drought out of this region (top vs. bottom right panels).  This interaction could be evaluated statistically for a given 
region using multifactor techniques (§ 4.8.2).  (Links to text § 4.8, Table 3, Table 4)  

                                                 
171 From: http://climate.gi.alaska.edu/ClimTrends/Change/TempChange.html (brown annotations added). 
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