Millennial-scale changes in North Atlantic circulation since the last glaciation

Thomas M. Marchitto Jr.*, William B. Curry† & Delia W. Oppo‡

* Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography, Woods Hole, Massachusetts 02543, USA
† Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

Ocean circulation is closely linked to climate change on glacial-interglacial and shorter timescales. Extensive reorganizations in the circulation of deep and intermediate-depth waters in the Atlantic Ocean have been hypothesized for both the last glaciation

Ocean circulation is closely linked to climate change on glacial-interglacial and shorter timescales. Extensive reorganizations in the circulation of deep and intermediate-depth waters in the Atlantic Ocean have been hypothesized for both the last glaciation1–8 and the subsequent Younger Dryas cold interval9–10, but there has been little palaeoceanographic study of the subtropical gyres11–13. These gyres are the dominant oceanic features of wind-driven circulation, and as such they reflect changes in climate and are a significant control on nutrient cycling and, possibly, atmospheric CO₂ concentrations. Here we present Cd/Ca ratios in the shells of benthic foraminifera from the Bahama banks that confirm previous suggestions1,12 that nutrient concentrations in the North Atlantic subtropical gyre were much lower during the Last Glacial Maximum than they are today (up to 50% lower according to our data). These contrasting nutrient burdens imply much shorter residence times for waters within the thermocline of the Last Glacial Maximum. Below the glacial thermocline, nutrient concentrations were reduced owing to the presence of Glacial North Atlantic Intermediate Water. A high-resolution Cd/Ca record from an intermediate depth indicates decreased nutrient concentrations during the Younger Dryas interval as well, mirroring opposite changes at a nearby deep site14–15. Together, these observations suggest that the formation of deep and intermediate waters—North Atlantic Deep Water and Glacial North
Atlantic Intermediate Water, respectively—wax and wane alternately on both orbital and millennial timescales.

The flanks of Little and Great Bahama banks border the North-West Providence Channel (~26°N, 78°W), which connects the North Atlantic basin (Sargasso Sea) to the Florida Straits. The waters within this channel are derived from the Sargasso Sea, and can be roughly divided into two water masses: the main thermocline of the North Atlantic subtropical gyre (<1,000 m depth) and the upper (Labrador Sea) component of North Atlantic Deep Water (NADW) (~1,000–2,000 m depth) (ref. 12). The gyre's upper thermocline waters outcrop (intersect with the base of the mixed layer) at latitudes to the north, where Ekman pumping and buoyancy flux subduct waters along deepening isopycnals to lower latitudes, following the anticyclonic circulation of the subtropical gyre. Along this route, productivity in overlying surface waters adds decaying organic matter and nutrients. Waters near the base of the thermocline outcrop farther north (above ~50°N) in a region of positive wind stress curl, Ekman upwelling, and poor ventilation. These waters circulate in the subpolar gyre before entering the subtropical gyre and are therefore higher in nutrients and depleted in O₂, creating a phosphate (PO₄³⁻) maximum and O₂ minimum near 800 m depth at Bahama banks. Deeper waters are largely derived from deep convection in the Labrador Sea.

Dissolved cadmium has an oceanic distribution that is very similar to that of phosphorus (ref. 16). Typically, both elements are absent in surface waters, increase rapidly to shallow maxima (~800–1,000 m depth), then decrease slightly in deeper waters. Because the Cd content of overlying water is recorded by the Cd/Ca ratio of benthic foraminifera shells, the nutrient content of water masses can be estimated during the past, both in terms of Cd concentration and inferred P concentration (via the modern Cd/P relationship). This method was first put to use in showing that the strength of NADW (which is relatively low in Cd and P) was substantially decreased during severe glaciations. Here we use glacial and Holocene Cd/Ca data from the Bahama banks to investigate the nutrient contents and circulation histories of the North Atlantic subtropical gyre and deep waters. Previous δ¹³C work implied that Bahamian Last Glacial Maximum (LGM) waters had ~50–60% less PO₄³⁻ than today. These results were disputed, however, because in addition to reflecting reduced nutrient levels, high δ¹³C values can result from colder temperatures of air–sea CO₂ exchange. Cd/Ca ratios have the advantage of being unaffected by such thermodynamic artefacts.

A suite of 15 sediment cores and grab samples span the depth range 334–1,468 m on the Bahama banks. Previous δ¹³C measurements on individual benthic foraminifera shells identified the late Holocene and LGM sections of each core. We picked samples of the aragonitic benthic foraminifer *Hoaeglindina elegans* from these two time periods. This species faithfully records bottom-water Cd concentrations with an apparent partition coefficient $D_C = [\text{Cd/Ca}]_{\text{water}}/([\text{Cd/Ca}]_{\text{shell}}) \approx 1.0$ (ref. 18). This D_C shows little or no dependence on water depth, in contrast to calcitic species which vary between 1.3 and 2.9 (ref. 20). Shells of *H. elegans* are also less prone to contamination than calcitic species, mainly because they appear to be immune to MnCO₃ overgrowths which add sedimentary Cd that is not effectively removed by cleaning.

A total of 54 late Holocene Cd/Ca measurements were made on *H. elegans* from the 15 core-tops. The resulting water-column profile of the inferred seawater Cd concentration, C_{dw}, follows the predicted profile (based on seawater [PO₄³⁻] measurements) quite closely (Fig. 1). Mean C_{dw} values range from 0.04 nmol kg⁻¹ at 334 m depth to a maximum of 0.42 nmol kg⁻¹ at 865 m, with concentrations ~0.35 nmol kg⁻¹ below 1,000 m depth. A total of 22 Cd/Ca measurements were made on *H. elegans* from the LGM sections of six cores, from 303 to 1,200 m palaeodepth (120 m was subtracted from the present core depths to account for the glacial sea level drop). Below 600 m, LGM C_{dw} averaged 0.18 nmol kg⁻¹, or ~0.1–0.2 nmol kg⁻¹ lower than today, a reduction of ~40–60% (Fig. 1). Application of the modern global Cd/P relationship to our data gives PO₄³⁻ concentrations (below 600 m) of 1.5–1.6 μmol kg⁻¹ during the late Holocene and 0.8–0.9 μmol kg⁻¹ during the LGM, for changes of 0.6–0.8 μmol kg⁻¹. These results are in good agreement with the marked LGM δ¹³C increase and implied $0.4–0.9 \mu \text{mol kg}^{-1}$ PO₄³⁻ decrease seen previously. Although these C_{dw} estimates are subject to some error, arising in part from regional scatter in the global Cd/P relationship, the magnitude of the inferred LGM–Holocene shift is a reasonable approximation. The concordance between Cd and δ¹³C suggests that there was little or no difference in the air–sea component of Bahamian δ¹³C (δ¹³Csub) between the LGM and today, although air–sea exchange effects may influence the δ¹³C record on shorter timescales.

Three main processes could have reduced nutrients in the Bahama banks glacial thermocline: (1) the disappearance of high-nutrient Antarctic Intermediate Water (AAIW), (2) decreased productivity in gyre surface waters, and (3) decreased transit times from where isopycnals are overturned. AAIW contributes <5% of Bahamian lower thermocline waters today, so its complete removal would account for <10% of the glacial nutrient decrease. If modern circulation rates were maintained and if glacial North Atlantic preformed PO₄³⁻ values were no lower than today, an unrealistically large (~80%) glacial reduction in productivity would be required to explain the low Bahamian PO₄³⁻ levels. Therefore conclude that LGM subtropical gyre waters had much shorter transit times from where isopycnals overturned, primarily due to stronger winds, a southward shift of thermocline outcrop areas, and a decreased contribution from the poorly

Figure 1 Vertical profiles of inferred seawater cadmium concentration, C_{dw}. Values of $C_{\text{dw}} = [(\text{Cd/Ca})_{\text{water}} \times O_2]/[\text{Ca}, \text{water}]$, where $[\text{Ca}, \text{water}] = 0.01 \mu \text{mol kg}^{-1}$, are based on *H. elegans* from Late Holocene (filled circles) and LGM (open circles) sediments from the Bahama banks. Each symbol is a mean of several measurements and error bars are standard errors (1σ). LGM depths are shifted upward by 120 m (relative to modern core depths) to account for the glacial sea level lowering. Also shown are predicted modern C_{dw} values (crosses) based on water-column PO₄³⁻ measurements and the global Cd/P relationship. Two of the 54 Holocene Cd measurements and one of the 22 LGM measurements were considered to be significantly contaminated (Cd, much higher than expected) and were not included in the means. The two LGM data marked with asterisks are biased toward high [Holocene] concentrations because core 1065GC (534 m palaeodepth) is heavily bioturbated, and core 148PC (300 m palaeodepth) barely penetrated glacial sediments.

558 NATURE/VOL 393/11 JUNE 1998
ventilated subpolar gyre. The existence of a faster, nutrient-depleted gyre is consistent with the 'nutrient deepening' mechanism for lowering atmospheric CO₂ levels.

As waters below the modern Bahamian nutrient maximum are not strongly influenced by wind-driven circulation, their glacial nutrient reduction is best explained by changes in deep-water formation. During the LGM, formation of NADW was substantially reduced, being replaced by the shallower (<2,500 m) low-nutrient Glacial North Atlantic Intermediate Water (GNAIW). At 1,800 m in the Caribbean, GNAIW had a Cdw of 0.21 mmol kg⁻¹ (ref. 20), about the same as the glacial Cdw estimate at 1,200 m in the Bahamas (0.19 ± 0.02 mmol kg⁻¹). Although it is difficult to make any clear distinction between the lower gyre and upper deep water, it is likely that the core from 965 m (OC205-2-103GGC) was at least partially influenced by the deep water. A high-resolution record of H. elegans Cdw from this radiocarbon-dated core chronicles the transition from marine isotope stage 3, through the LGM, to the present (Fig. 2; see Supplementary Information for dates). Concentrations of Cdw were relatively low during stages 3 and 2, averaging 0.17 mmol kg⁻¹. The deglaciation is characterized by a general increase between ≈19,500 and 8,500 calendar years before present (cal. yr BP), with Holocene concentrations averaging 0.35 mmol kg⁻¹. Within this rise is a period of decreased Cdw coincident with the Younger Dryas interval. Comparison to a high-resolution Cδ record from the deep North Atlantic (4,450 m, Bermuda rise) reveals a striking inverse correlation (Fig. 3). This suggests that at times of weak NADW formation (high Cdw at 4,450 m), GNAIW formation was strong (low Cdw at 965 m). Another potential source of nutrient-depleted intermediate waters, Mediterranean Outflow Water, does not appear to have strengthened during either the Younger Dryas or the LGM. We
therefore present what is, to our knowledge, the first direct palaeo-

nutrient evidence for GNAIW formation during the Younger Dryas,

at the expense of NADW.

The raw benthic δ13C record from 103GGC looks significantly
different from the Cd record (Fig. 2). Converting all δ13C and Cd
to equivalent PO2− (refs 16, 18, 27), and accounting for the whole-

ocean glacial carbon isotopic shift of 0.3‰ (refs 4, 5), again

produces reasonably good agreement during the Late Holocene

and LGM (Fig. 4). Although it is difficult to estimate how the whole-

ocean δ13C shift evolved during the deglaciation, a gradual linear

change removes the δ13C minimum seen at ~13,000 yr BP,
improving the Cd-δ13C agreement. Discrepancies remain, however,
during the Younger Dryas and during stage 3 (before 40,000 cal. yr BP).

These may be attributed to the obscuring effects of the whole-
ocean carbon isotopic shift and to the influences of air–sea

exchange on δ13C (ref. 19). For example, the opposing air–sea isotopic
effects of cooling (raising δ13C) and decreased air–sea contact time

(lowering δ13C) may have been roughly balanced during the LGM,

but decreased air–sea contact may have dominated over the less

extreme coolings of the Younger Dryas and stage 3. Given such

complications to the δ13C record, we believe that Cd is a more

reliable indicator of short-term nutrient changes, especially within

the main climate transitions.

Our results demonstrate that periods of enhanced intermediate-

water production alternate with periods of enhanced deep-water

formation on both orbital and millennial timescales. Analogous

dynamics operate in the modern North Atlantic on much shorter

(decadal) timescales, with deep convection alternating between

regions of upper (Labrador Sea) and lower (Greenland Sea)

NADW formation42. However, these brief reconfigurations have

smaller effects on oceanic temperature and nutrient structure than

the larger-scale events occurring during the last deglaciation.

The cooling of the North Atlantic during the Younger Dryas has

long been linked to a reduction or cessation of NADW formation,

which today releases a great deal of heat to the high-latitude

atmosphere2,3,9. Recent modelling suggests that a peak in atmo-

spheric radiocarbon activity during the Younger Dryas is best

explained by a cessation of NADW and a subsequent increase in

GNAIW formation9. Our Cd data from 965 m indicate that

GNAIW partially replaced NADW during this cold period, though
to a lesser extent than during the LGM. A Younger Dryas δ18O

section through the eastern Atlantic9 supports this view of a

moderately weakened NADW, but there are too few well-positioned

shallow data in that reconstruction to discern a clear GNAIW mass;

GNAIW should also be less evident in the eastern North Atlantic

because deep waters are concentrated into western boundary
currents. The Younger Dryas cooling may have thus been accom-

plished through the formation of intermediate waters that were

less efficient at heating the North Atlantic than NADW9. It is clear

that North Atlantic climate change at the end of the last glacial

period can no longer be explained by a simple convection ‘on/off-

switch.’

Received 22 July 1997; accepted 1 April 1998.

Supplementary Information is available on Nature's World Wide Web site (http://www.nature.com) or as a paper copy from the London editorial office of Nature.

Acknowledgements. We thank P. Lehmkuhl for providing modern Bahama Poratdata and sediment grab samples; M. Seglinski, D. Ostermann and L. Zou for isotope laboratory assistance; and E. Boyle, L. Krieger, L. Labeyrie, D. McCorkle, J. McManus and R. Zahn for comments and discussions. This work was supported by the US NSF.

Correspondence and requests for materials should be addressed to T.M.M. (e-mail: tmarchitto@whoi.edu). Stable-isotope and Cd data are available on NOAA's World Data Center-A for Paleoclimatology (http://www.ncdc.noaa.gov/paleo/paleodat.html).