Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic

Thomas M. Marchitto Jr.
Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA

Delia W. Oppo and William B. Curry
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

Received 13 October 2000; revised 2 April 2002; accepted 2 April 2002; published 15 August 2002.

1. Introduction

[1] Benthic foraminiferal δ^{13}C and Cd/Ca studies suggest that deep Atlantic circulation during the Last Glacial Maximum was very different from today, with high-nutrient (low δ^{13}C, high Cd) deep Southern Ocean Water (SOW) penetrating far into the North Atlantic. However, if some glacial δ^{13}C values are biased by productivity artifacts and/or air-sea exchange processes, then the existing δ^{13}C data may be consistent with the continual dominance of North Atlantic Deep Water (NADW). Cibicidoides wuellerstorfi Cd/Ca results presented here indicate that the glacial North Atlantic was strongly enriched in dissolved Cd below ~2500 m depth. If NADW formation was still vigorous relative to SOW formation, these data could be explained by either increased preformed nutrient levels in the high-latitude North Atlantic or by increased organic matter remineralization within lower NADW. High glacial Zn/Ca values in the same samples, however, are best explained by a substantially increased mixing with Zn-rich SOW. The cause was most likely a partial replacement of NADW by less dense Glacial North Atlantic Intermediate Water. This reorganization also lowered deep North Atlantic CO$_2^*$ concentrations by perhaps 10 to 15 µmol kg$^{-1}$.

INDEX TERMS: 4267 Oceanography: General: Paleooceanography; 4808 Oceanography: Biological and Chemical: Chemical tracers; 4825 Oceanography: Biological and Chemical: Geochemistry; 4875 Oceanography: Biological and Chemical: Trace elements; KEYWORDS: North Atlantic, LGM, cadmium, zinc, deep circulation

[2] It has long been suggested that the formation of North Atlantic Deep Water (NADW) was curtailed during glacial periods [e.g., Weyl, 1968; Newell, 1974; Duplessy et al., 1975]. Curry and Lohmann [1982] used benthic foraminifera to reconstruct a Last Glacial Maximum (LGM) bathymetric profile of δ^{13}C in the Vema Channel (western South Atlantic). They argued that their data indicated a shoaling of the boundary between northern and southern source deep waters, and speculated that this geometry could have resulted from a reduction or cessation of NADW production. Boyle and Keigwin [1982] showed that deep North Atlantic benthic foraminiferal Cd/Ca ratios, and thus seawater dissolved Cd concentrations, were higher during glacial periods. This suggested that the flux of nutrient-depleted NADW was indeed reduced relative to that of nutrient-rich southern source waters, though never completely ceased since Cd/Ca values remained lower than in the modern deep Pacific. Together these studies implied that deep Southern Ocean Water (SOW, equivalent to Antarctic Bottom Water (AABW) and/or Circumpolar Deep Water (CPDW)) was able to penetrate farther northward into the Atlantic during the LGM.

[3] As spatial data coverage within the Atlantic increased, a more detailed picture of inferred LGM circulation emerged. Increased δ^{13}C and low Cd/Ca values in intermediate depth waters (above ~2000 m) signaled the presence of a nutrient-depleted water mass [Oppo and Fairbanks, 1987; Boyle and Keigwin, 1987]. Boyle and Keigwin [1987] argued that surface conditions in the glacial North Atlantic (colder but less saline) favored the production of intermediate waters rather than NADW. The extent of this water mass, dubbed Glacial North Atlantic Intermediate Water (GNAIW), was mapped in some detail by Duplessy et al. [1988] using δ^{13}C. Additional δ^{13}C studies have further refined this view [e.g., Oppo and Lehman, 1993; Sarnthein et al., 1994]. LGM Cd/Ca data agree with δ^{13}C on a gross scale, but differ in two important ways [Boyle, 1992; Boyle and Rosenthal, 1996]. First, δ^{13}C implies that North Atlantic intermediate waters were greatly depleted in nutrients relative to today, while Cd/Ca suggests a much smaller decrease; the main Cd/Ca change appears to be limited to deeper waters (note, however, that intermediate-depth Cd/Ca and δ^{13}C do imply similar nutrient depletions in some regions, such as the Bahama Banks [Marchitto et al., 1998]). Second, δ^{13}C implies that Antarctic deep waters were greatly enriched in nutrients relative to today, while Cd/Ca again suggests little change. Boyle and Rosenthal [1996] suggested that the latter discrepancy is mainly due to a δ^{13}C artifact that occurs beneath regions of high surface water productivity.
[Mackensen et al., 1993]. A third paleonutrient tracer, benthic foraminiferal Ba/Ca, supports the existence of GNAIW and reduction of NADW, but suggests no contrast between the deep Atlantic and Pacific during the LGM [Lea and Boyle, 1990]. Deep Atlantic Ba may have become decoupled from Cd and 13C because of an increase in barite regeneration at the seafloor associated with increased productivity [Lea and Boyle, 1990; Martin and Lea, 1998].

[4] The hypothesis of NADW replacement by GNAIW and SOW assumes that surface ocean (“preformed”) nutrient levels in the glacial North Atlantic were not significantly different than today. Mix and Fairbanks [1985] noted the similarity between planktonic and benthic 13C records in the North Atlantic, and proposed that at least some of the glacial 13C depletion in the deep Atlantic could be explained by lower preformed values due to higher initial nutrient contents. They further speculated that if glacial NADW formed beneath sea and shelf ice, then the combination of increased preformed nutrients and reduced air-sea isotopic exchange might explain the entire deep Atlantic 13C decrease. The planktonic foraminifer used by Mix and Fairbanks [1985] (Neogloboquadrina pachyderma (s.)) has since been shown to be a poor recorder of seawater 13C, however [Keigwin and Boyle, 1989; Kohfeld et al., 2000]. Nevertheless, remaining uncertainties in the end-member compositions of glacial northern and southern source waters make volumetric deep water reconstructions somewhat ambiguous [LeGrand and Wunsch, 1995]. Vigorous NADW flow could explain the sedimentary 231Pa/230Th observations of Yu et al. [1996], though vigorous GNAIW flow could do the same.

[5] The idea of NADW’s persistent dominance over SOW during the LGM was revived by Matsumoto and Lynch-Stieglitz [1999]. They proposed that many Southern Ocean benthic 13C data are affected by Mackensen et al.’s [1993] productivity artifact, and argued that the “true” LGM Southern Ocean value (2500–4000 m) must be close to -0.2%. Thus LGM deep ocean 13C decreased from north to south in the Atlantic and from south to north in the Pacific, as it does today. In addition, the LGM “whole deep ocean” gradient ($\sim1.1\%$) was the same as today, although the Southern Ocean appears to have been slightly closer to Pacific values. The authors concluded that a significant amount of NADW must have formed during the LGM. They further noted that the glacial 13C data could be consistent with a circulation pattern very similar to today, without an increased northward migration of SOW. They did not rule out the presence of GNAIW, but proposed that the vertical gradient in glacial 13C was mainly caused by differences in preformed values, largely due to latitudinal gradients in North Atlantic air-sea exchange [Lynch-Stieglitz and Fairbanks, 1994]. Although Matsumoto and Lynch-Stieglitz’s [1999] observations are also consistent with a mixing between reduced-volume NADW and northward-penetrating SOW, their proposed circulation scheme cannot be ruled out using 13C alone.

[6] Under a scenario of Holocene-like NADW flux, deep North Atlantic LGM Cd/Ca data [Boyle, 1992] require that either high-latitude North Atlantic preformed nutrients were higher, or that lower NADW collected more remineralized nutrients over a given distance than it does today. An increase in preformed Cd is in apparent contradiction with planktonic (N. pachyderma) Cd/Ca data [Keigwin and Boyle, 1989]. However, Rickaby and Elderfield [1999] have suggested that Cd incorporation into the planktonic foraminifer Globigerinoides bulloides increases strongly with temperature. If applicable to N. pachyderma, Keigwin and Boyle’s [1989] glacial North Atlantic data may underestimate surface water Cd concentrations. An increase in nutrient accumulation independent of mixing (i.e., “aging”), which could occur by increased particulate rain rates or by more sluggish circulation, is difficult to rule out using published data. It would only require that GNAIW formation was much more rapid than the southward progression of deeper waters, a situation that is supported by sedimentological current speed evidence [e.g., Ledbetter and Balsam, 1985; Haskell et al., 1991; McCave et al., 1995] Such a reduction in lower NADW flow without an increased admixture of SOW would presumably require a corresponding decrease in SOW formation.

[7] We propose that the ambiguity surrounding SOW penetration into the North Atlantic may be resolved using benthic foraminiferal Zn/Ca. In the modern ocean, both dissolved Cd and dissolved Zn are completely removed from most surface waters, but Zn has a deeper regeneration cycle [e.g., Boyle et al., 1976; Bruland et al., 1978; Bruland, 1980]. While AABW-like Cd concentrations (estimated from P) are found in intermediate waters as far north as 15$^\circ$N in the western North Atlantic, AABW-like Zn concentrations (estimated from Si) are limited to deep Southern Ocean waters (Figure 1). Since intermediate waters are the main source of nutrients to the North Atlantic surface, any glacial increase in preformed Cd would be accompanied by a comparatively small increase in preformed Zn. Similarly, the low Zn:Cd ratio of these upper waters would limit the biological export of Zn (relative to Cd) to deeper waters. Thus the only way to produce high Zn:Cd ratios in the deep North Atlantic would be by mixing with SOW. Ba is also preferentially concentrated in deep SOW because of a deep regeneration cycle, but to a lesser degree than Zn since Ba is not as efficiently removed from surface waters [Chan et al., 1977]. Marchitto et al. [2000] have shown that Zn/Ca ratios in the benthic foraminifera Cibicidoides wuellerstorfi and Uvigerina reflect bottom water dissolved Zn concentrations and, like Cd/Ca and Ba/Ca [McCorkle et al., 1995; Elderfield et al., 1996], bottom water saturation state with respect to calcite (ACHN).
Today all of the sites are bathed by nearly pure NADW, with potential temperatures of $2–4°C$ and salinities of $34.9–35.0\%$ (we use “pure NADW” as a generic term to describe deep waters originating in the north, before any significant mixing with deep or intermediate waters from the south; it is close to, but not necessarily identical to, Broecker and Peng’s [1982] Northern Component Water (NCW)). There is a slight increase in dissolved nutrients between the northeastern and Mid-Atlantic Ridge regions, with P increasing by roughly $0.1\, \mu\text{mol kg}^{-1}$ ($0.02\, \text{nmol kg}^{-1}$ Cd) and Si increasing by roughly $3\, \mu\text{mol kg}^{-1}$ ($0.2\, \text{nmol kg}^{-1}$ Zn) [Bainbridge, 1981]. These gradients are small compared to the scatter typical of foraminiferal data, and the nine cores will be treated together in this study.

ΔCO_2^+ estimates recalculated from nearest GEOSECS data [Bainbridge, 1981] following the recommendations of United Nations Educational, Scientific, and Cultural Organization (UNESCO) [1987] range from 23 to $45\, \mu\text{mol kg}^{-1}$. Although Zn partition coefficients begin to decrease below $25\, \mu\text{mol kg}^{-1}$ ΔCO_2^+ [Marchitto et al., 2000], no correction will be made to the Holocene Zn/Ca data.

$C. wuellerstorfi$ $\delta^{13}C$ has been previously measured in the late Holocene and LGM sections of each core [Boyle and Keigwin, 1982, 1985/1986, 1987; Boyle, 1992; Oppo and Lehman, 1993, 1995; Curry et al., 1999; McManus et al., 1999] (Figure 3 and Table 1). Holocene means are relatively uniform with depth ($1.13 \pm 0.10\%$), as expected from the water column measurements of Kroopnick [1985]. LGM means are enriched (relative to the Holocene) by up to 0.38% above $2000\, \text{m}$ and depleted by up to 0.63% below this depth. The exception is CHN82-15PC at $2153\, \text{m}$ and $43^\circ N$, which has a glacial enrichment of 0.25%, though the Holocene value in this core is poorly constrained.

Benthic foraminiferal ($C. wuellerstorfi$, $C. kullenbergi$, and $Uvigerina$) Cd/Ca has also been previously measured in
the four CHN82 cores [Boyle and Keigwin, 1982, 1985/1986, 1987; Boyle, 1992]. Below 3000 m, LGM means are higher than Holocene means by up to 0.05 μmol mol⁻¹, while the shallower core (2153 m) shows a glacial depletion of 0.01 μmol mol⁻¹. This general pattern is consistent with the δ¹³C results. Since our new measurements give us the opportunity to compare Cd/Ca and Zn/Ca in the same samples, we will not incorporate the older Cd/Ca data in

Table 1. Core Locations and Previously Published *C. wuellerstorfi* δ¹³C Data

<table>
<thead>
<tr>
<th>Core</th>
<th>Location</th>
<th>Depth, m</th>
<th>Holocene Depth, cm</th>
<th>Holocene δ¹³C, ‰</th>
<th>Holocene LGM Depth, cm</th>
<th>LGM δ¹³C, ‰</th>
<th>LGM Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V29-193</td>
<td>55.40°N, 18.73°W</td>
<td>1326</td>
<td>15</td>
<td>1.12</td>
<td>55–64.5</td>
<td>1.50 ± 0.12</td>
<td>Oppo and Lehman [1993]</td>
</tr>
<tr>
<td>V29-204</td>
<td>61.18°N, 23.02°W</td>
<td>1849</td>
<td>5–36</td>
<td>1.24 ± 0.07</td>
<td>201–235</td>
<td>1.37 ± 0.09</td>
<td>Curry et al. [1999]</td>
</tr>
<tr>
<td>V28-73</td>
<td>57.18°N, 20.87°W</td>
<td>2063</td>
<td>3.5–15</td>
<td>1.17 ± 0.14</td>
<td>43–64</td>
<td>1.16 ± 0.09</td>
<td>Oppo and Lehman [1993]</td>
</tr>
<tr>
<td>CHN82-15PC</td>
<td>43.37°N, 28.23°W</td>
<td>2153</td>
<td>2–6</td>
<td>0.96 ± 0.46</td>
<td>29–33</td>
<td>1.21 ± 0.05</td>
<td>Boyle and Keigwin [1987]</td>
</tr>
<tr>
<td>ODP 980⁰</td>
<td>55.48°N, 14.70°W</td>
<td>2168</td>
<td>0–24</td>
<td>1.04 ± 0.07</td>
<td>402–442</td>
<td>0.82 ± 0.03</td>
<td>McManus et al. [1999]</td>
</tr>
<tr>
<td>V29-202</td>
<td>60.38°N, 20.97°W</td>
<td>2658</td>
<td>4–21, 31–35</td>
<td>1.06 ± 0.18</td>
<td>100–114</td>
<td>0.45 ± 0.05</td>
<td>Oppo and Lehman [1995]</td>
</tr>
<tr>
<td>CHN82-20PG/C</td>
<td>43.50°N, 29.87°W</td>
<td>3070</td>
<td>3.5–15</td>
<td>1.30 ± 0.14</td>
<td>79–89</td>
<td>0.76 ± 0.12</td>
<td>Keigwin and Lehman [1994]</td>
</tr>
<tr>
<td>CHN82-11PC</td>
<td>42.38°N, 31.80°W</td>
<td>3209</td>
<td>11–20</td>
<td>1.17 ± 0.34</td>
<td>70–80</td>
<td>0.66 ± 0.06</td>
<td>Boyle and Keigwin [1982]</td>
</tr>
<tr>
<td>CHN82-4PC</td>
<td>41.72°N, 32.85°W</td>
<td>3427</td>
<td>1–4</td>
<td>1.11</td>
<td>56–65</td>
<td>0.48 ± 0.06</td>
<td>Boyle and Keigwin [1985/1986]</td>
</tr>
</tbody>
</table>

* a Sample depths refer to δ¹³C data only; our trace metal sample depths are listed in Table 2.
* b The δ¹³C errors are ±1σ on means of 2 to 14 measurements.
* c Sample depths are composite; actual sample IDs are 980B-1H-01, 0–24 cm (Holocene), and 980C-2H-01, 44–86 cm (LGM).
* d Holocene depths are from the pilot gravity core and LGM depths are from the piston core (not composite).
* e Data from Boyle and Keigwin [1982] are here corrected following the recommendations of Craig [1957] (L. Keigwin, personal communication, 2000).
our calculations. A brief comparison of the two Cd/Ca data sets is included in the results section.

3. Materials and Methods

[11] Late Holocene and LGM intervals of each sediment core were identified using previously published stable isotope data [Boyle and Keigwin, 1982, 1985/1986, 1987; Boyle, 1992; Oppo and Lehman, 1993, 1995; Curry et al., 1999; McManus et al., 1999] (Figure 4). Zn, Cd, and Mn concentrations were measured in shells of the benthic foraminifera *C. wuellerstorfi, C. kullenbergi, C. pachyderma, C. rugosus,* and *Uvigerina* spp. Each sample consisted of ~5 to 15 individuals (>250 μm), and was cleaned following the methods of Boyle and Keigwin [1985/1986] as modified by Boyle and Rosenthal [1996]. Samples were generally kept covered when outside of laminar flow benches to minimize the risk of dust-borne laboratory contamination, which has historically been a major obstacle to Zn work [Boyle et al., 1989]. Zn, Cd, and Mn were measured sequentially by graphite furnace atomic absorption spectrophotometry (AAS) and Ca was measured by flame AAS, all on a Hitachi Z-8200. Analytical precision, based on frequent analyses of three consistency standards, is ±2–3% for Zn, ±3–6% for Cd, ±8–9% for Mn, and ±1% for Ca.

4. Results and Discussion

4.1. Cd/Ca Profiles

[12] Holocene and LGM *C. wuellerstorfi* Cd/Ca values measured in each core are shown in Figure 5a and listed (along with *C. kullenbergi, C. pachyderma, C. rugosus,* and *Uvigerina* data) in Table 2. Results from all five taxa agree with previously published data from above 40°N in the North Atlantic [Boyle and Keigwin, 1982, 1985/1986, 1987; Boyle, 1992; Bertram et al., 1995; Rickaby et al., 2000] in that LGM values are lower than Holocene above ~2500 m and higher than Holocene below this depth. The only exception is core V29-204 at 1849 m, whose Holocene *C. wuellerstorfi* values are slightly lower than its LGM. All but five Mn/Ca measurements are below 100 μmol mol⁻¹ (Table 2), suggesting that Mn-carbonate overgrowths are not a major source of contamination.

[13] Our *C. wuellerstorfi* Cd/Ca values are significantly higher than coexisting *C. kullenbergi* and *Uvigerina* values in the three deepest cores. Such large offsets (0.02 to 0.05 μmol mol⁻¹) are not unusual in deep sea cores and may reflect, in part, the mixing together of noncontemporaneous individuals [Boyle, 1992, 1995]. Boyle reported *C. wuellerstorfi* data from only one of these cores, CHN82-20 (3070 m) [Boyle and Keigwin, 1985/1986]. He found no consistent offset between *C. wuellerstorfi* and the other two taxa, but there is a large amount of variability in the data. A species-by-species comparison of our data with Boyle’s does not suggest any significant analytical offset, nor does an inter-laboratory standard calibration (our unpublished data). Heinrich events 1 and 2 could be mixed into some of the glacial data, though this is not the case for CHN82-20, the only one of the deep cores where Heinrich event 1 has been clearly identified [Keigwin and Lehman, 1994]. Glacial values above 0.15 μmol mol⁻¹ occur elsewhere in the North Atlantic, such as in Bermuda Rise core EN120-GGC1 (4450 m) which reached 0.22 μmol mol⁻¹ [Boyle and Keigwin, 1987].

[14] The ensuing discussion will focus on *C. wuellerstorfi* for three reasons. First, it is the only species present in both Holocene and LGM sections from all water depths (the exception being the Holocene of ODP 980, where none of the four taxa were available). Second, *C. kullenbergi* and *C. pachyderma* either have very high and unconstrained Zn partition coefficients or else are prone to Zn contamination (Table 2), making direct comparisons to other species impossible. Finally, we feel that *Uvigerina* is likely to be a less accurate recorder of bottom water conditions because of its shallow infaunal habitat [Zahn et al., 1986; McCorkle et al., 1997] (whereas *C. wuellerstorfi* has been observed to prefer an elevated epifaunal position [Lutze and Thiel, 1989]). For example, although bottom water ΔCO₂ is probably an issue for LGM Zn/Ca only, pore water ΔCO₂ might become low enough in the top 1 cm [e.g., Martin and Sayles, 1996] to affect *Uvigerina* Cd/Ca.

[15] Holocene and LGM profiles of inferred seawater Cd concentration (Cdₙ), converted from *C. wuellerstorfi* Cd/Ca using the depth-dependent partition coefficients of Boyle [1992], are shown in Figure 5b. Most of the Holocene data are slightly higher than predicted from modern dissolved P estimates [Bainbridge, 1981]. Since these samples are not from truly modern sediments, it is possible that they record earlier Holocene times when Cdₙ could have been somewhat higher. Two of the shallow Holocene data (V29-193 at 1326 m and V28-73 at 2063 m) are...
much higher than expected, however, a problem noted by Bertram et al. [1995] in several cores from the same region (northeast North Atlantic above 50°N). They concluded that regional partition coefficients are elevated for some unspecified reason, but two of our other cores from this area (V29-202 and V29-204) do not share this pattern. We suggest that the tops of V28-73, V29-193, and some of Bertram et al.’s [1995] cores might be affected by sedimentary contamination. This problem may be prevalent in the northeast North Atlantic, but it is clearly not ubiquitous. LGM data from the cores with elevated Holocene values appear to agree well with other LGM data (Figure 5), implying that any contamination is probably limited to the upper sections of these cores.

LGM CdW data above ~2500 m are similar to modern predicted values, while deeper data are significantly enriched in Cd. This is essentially the same pattern observed by Boyle [1992], but with a greater deep enrichment. The deepest values (0.52–0.58 nmol kg⁻¹) are close to those observed in LGM C. wuellerstorfi from the low-latitude eastern North Atlantic below ~3500 m (0.52–0.54 nmol kg⁻¹) [Boyle, 1992; Beveridge et al., 1995]. The difference between LGM and Holocene values increases with depth, from 0.07 nmol kg⁻¹ at 2658 m to 0.23 nmol kg⁻¹ at 3427 m. Differences from modern predicted values increase from ~0.17 to 0.33 nmol kg⁻¹.

4.2. Zn/Ca Profiles

Holocene and LGM C. wuellerstorfi Zn/Ca measurements from each core are shown in Figure 5c and listed (with data from the other taxa) in Table 2. C. wuellerstorfi values are again significantly higher than coexisting Uvigerina specimens in the two deepest cores, and Holocene C. kullenbergi data are either contaminated or imply a partition coefficient close to 50. Five of the eight C. wuellerstorfi Holocene means are in excellent agreement with estimates based on modern dissolved Si concentrations [Bainbridge, 1981] using a partition coefficient (D_Zn) of 9 [Marchitto et al., 2000]. The three Holocene values that are higher than predicted are from the same cores that were most elevated in Cd/Ca. Again, core V29-204 (1849 m) shows no Holocene elevation. LGM C. wuellerstorfi Zn/Ca values are similar to Holocene data above ~2500 m and enriched below this depth, in general agreement with the glacial CdW pattern.
The deep LGM Zn/Ca values range from 3.1 to 4.4 \(\mu\text{mol mol}^{-1}\), or about 1.5 to 2.7 \(\mu\text{mol mol}^{-1}\) higher than today.

[16] To determine whether or not the deep glacial Zn/Ca enrichment requires a significant contribution from SOW, the LGM CdW data from the four deepest cores will be modeled according to three scenarios: (1) increased preformed nutrient concentrations in the high-latitude North Atlantic; (2) greater addition of remineralized organic matter to lower NADW (aging); and (3) decreased relative flux of NADW and increased mixing with SOW. Each model will produce predicted Zn/Ca values, which will then be compared to the actual measurements. All calculations in the text will use the data from core CHN82-20 (3070 m) as an example; results from all four deepest cores are listed in Table 3. Note that two to three significant digits will be used for calculations, but we make no claim that the various parameters are known to such high precision.

4.3. Modern Circulation Model

[19] Before attempting to infer LGM deep circulation, it is necessary to adopt a simple nutrient model that works for the modern ocean. We assume that deep water nutrient concentrations change by two mechanisms: remineralization of biological rain (aging) and mixing with other water masses. These processes will be modeled using dissolved Cd and Zn; Cd is estimated from GEOSECS P measurements using the two-part linear relationship of Boyle [1988] and Zn is estimated from GEOSECS Si measurements using the linear relationship of Marchitto et al. [2000]. Elderfield and Rickaby [2000] recently suggested that the Cd:P relationship is better defined using curves that depend on a regionally varying Cd/P fractionation factor, \(\alpha\). We choose to retain Boyle’s [1988] equations for simplicity and consistency with previous paleoceanographic studies. Since we combine the Cd:P relationship with a rather crudely defined linear Zn:Si relationship, we feel that Boyle’s [1988] equations are adequate for our purposes. The two-part global Cd:P relationship is a reasonable approximation of Elderfield and Rickaby’s [2000] Atlantic curve (\(\alpha = 2.5\)) and is therefore a reasonable approximation of Cd:P remineralization within the Atlantic. It will be seen in a later section that this choice of equations has little impact on our results.

[20] The aging process within the North Atlantic can be examined by following modern P and Si from the region of

Figure 5. (opposite) (a) New Cd/Ca measurements on Holocene (open circles) and LGM (solid circles) \(C.\) wuellerstorfi from the North Atlantic. Also shown (crosses) are modern predictions based on dissolved P measurements at GEOSECS station 27 (42\(^\circ\)N, 42\(^\circ\)W) [Bainbridge, 1981], using the Cd:P relationship of Boyle [1988] and the depth-dependent partition coefficients of Boyle [1992]. (b) As in Figure 5a but averaged and converted to inferred seawater Cd concentrations (CdW) using the partition coefficients of Boyle [1992]. Error bars are \(\pm 1\sigma\). (c) Mean Zn/Ca measured in the same North Atlantic \(C.\) wuellerstorfi samples as used for Cd/Ca. Pluses are modern predictions based on dissolved Si measurements at GEOSECS station 27 assuming a partition coefficient of 9 [Marchitto et al., 2000].
Table 2. Trace Metal Data From this Study, Grouped by Species

<table>
<thead>
<tr>
<th>Core</th>
<th>Sample Depth, cm</th>
<th>[Ca], (mM)</th>
<th>Zn/Ca, μmol mol⁻¹</th>
<th>Cd/Ca, μmol mol⁻¹</th>
<th>Mn/Ca, μmol mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>V29-193 (1326 m)</td>
<td>0–15 (H)</td>
<td>28.60</td>
<td>2.08</td>
<td>0.068</td>
<td>50.0</td>
</tr>
<tr>
<td>V29-193 (1326 m)</td>
<td>60–65 (G)</td>
<td>24.07</td>
<td>1.40</td>
<td>0.040</td>
<td>68.6</td>
</tr>
<tr>
<td>V29-204 (1849 m)</td>
<td>10–12 (H)</td>
<td>7.56</td>
<td>nm</td>
<td>0.037</td>
<td>30.3</td>
</tr>
<tr>
<td>V29-204 (1849 m)</td>
<td>15–20 (H)</td>
<td>4.69</td>
<td>1.22</td>
<td>0.018</td>
<td>66.9</td>
</tr>
<tr>
<td>V29-204 (1849 m)</td>
<td>205 (G)</td>
<td>13.98</td>
<td>1.37</td>
<td>0.038</td>
<td>226.9</td>
</tr>
<tr>
<td>V28-73 (2063 m)</td>
<td>3–4 (H)</td>
<td>15.03</td>
<td>3.62</td>
<td>0.102</td>
<td>44.9</td>
</tr>
<tr>
<td>V28-73 (2063 m)</td>
<td>3–4 (G)</td>
<td>12.95</td>
<td>3.00</td>
<td>0.119</td>
<td>48.1</td>
</tr>
<tr>
<td>V29-204 (1849 m)</td>
<td>10 (H)</td>
<td>8.77</td>
<td>2.38</td>
<td>0.134</td>
<td>34.8</td>
</tr>
<tr>
<td>V29-204 (1849 m)</td>
<td>10 (G)</td>
<td>13.82</td>
<td>2.48</td>
<td>0.112</td>
<td>44.6</td>
</tr>
<tr>
<td>V28-73 (2063 m)</td>
<td>43 (G)</td>
<td>22.33</td>
<td>2.15</td>
<td>0.064</td>
<td>nm</td>
</tr>
<tr>
<td>V28-73 (2063 m)</td>
<td>43 (G)</td>
<td>21.45</td>
<td>1.99</td>
<td>0.061</td>
<td>nm</td>
</tr>
<tr>
<td>CHN82-15PC (2153 m)</td>
<td>0–6 (H)</td>
<td>15.05</td>
<td>1.96</td>
<td>0.075</td>
<td>13.7</td>
</tr>
<tr>
<td>CHN82-15PC (2153 m)</td>
<td>0–6 (G)</td>
<td>7.88</td>
<td>2.26</td>
<td>0.080</td>
<td>9.3</td>
</tr>
<tr>
<td>CHN82-15PC (2153 m)</td>
<td>0–6 (H)</td>
<td>12.94</td>
<td>3.48</td>
<td>0.127</td>
<td>16.1</td>
</tr>
<tr>
<td>CHN82-15PC (2153 m)</td>
<td>0–6 (G)</td>
<td>17.31</td>
<td>2.40</td>
<td>0.079</td>
<td>13.2</td>
</tr>
<tr>
<td>CHN82-15PC (2153 m)</td>
<td>31 (G)</td>
<td>26.11</td>
<td>2.51</td>
<td>0.055</td>
<td>11.0</td>
</tr>
<tr>
<td>ODP 980 (2168 m)</td>
<td>421–442 (G)</td>
<td>10.15</td>
<td>1.82</td>
<td>0.052</td>
<td>nm</td>
</tr>
<tr>
<td>V29-202 (2658 m)</td>
<td>26–54 (H)</td>
<td>23.89</td>
<td>1.32</td>
<td>0.080</td>
<td>170.8</td>
</tr>
<tr>
<td>V29-202 (2658 m)</td>
<td>107–108 (G)</td>
<td>10.15</td>
<td>4.09</td>
<td>0.099</td>
<td>198.3</td>
</tr>
<tr>
<td>CHN82-20PG (3070 m)</td>
<td>3–9 (H)</td>
<td>11.21</td>
<td>1.64</td>
<td>0.082</td>
<td>18.5</td>
</tr>
<tr>
<td>CHN82-20PG (3070 m)</td>
<td>3–9 (G)</td>
<td>11.43</td>
<td>1.55</td>
<td>0.083</td>
<td>17.6</td>
</tr>
<tr>
<td>CHN82-20PG (3070 m)</td>
<td>80–82 (G)</td>
<td>22.91</td>
<td>2.91</td>
<td>0.116</td>
<td>69.0</td>
</tr>
<tr>
<td>CHN82-20PG (3070 m)</td>
<td>80–82 (G)</td>
<td>24.96</td>
<td>3.06</td>
<td>0.134</td>
<td>60.3</td>
</tr>
<tr>
<td>CHN82-20PG (3070 m)</td>
<td>80–82 (G)</td>
<td>9.67</td>
<td>3.25</td>
<td>0.117</td>
<td>61.1</td>
</tr>
<tr>
<td>CHN82-11PG (3209 m)</td>
<td>6–8 (H)</td>
<td>14.51</td>
<td>1.70</td>
<td>0.084</td>
<td>13.7</td>
</tr>
<tr>
<td>CHN82-11PG (3209 m)</td>
<td>74–76 (G)</td>
<td>19.85</td>
<td>3.62</td>
<td>0.160</td>
<td>43.6</td>
</tr>
<tr>
<td>CHN82-11PG (3209 m)</td>
<td>74–76 (G)</td>
<td>74–76 (G)</td>
<td>22.95</td>
<td>4.13</td>
<td>0.157</td>
</tr>
<tr>
<td>CHN82-11PG (3209 m)</td>
<td>76–78 (G)</td>
<td>16.89</td>
<td>3.50</td>
<td>0.164</td>
<td>38.0</td>
</tr>
<tr>
<td>CHN82-11PG (3209 m)</td>
<td>76–78 (G)</td>
<td>14.03</td>
<td>3.15</td>
<td>0.135</td>
<td>32.7</td>
</tr>
<tr>
<td>CHN82-11PG (3209 m)</td>
<td>78–80 (G)</td>
<td>23.42</td>
<td>3.08</td>
<td>0.142</td>
<td>33.0</td>
</tr>
<tr>
<td>CHN82-24PG (3427 m)</td>
<td>0–3 (H)</td>
<td>15.20</td>
<td>1.64</td>
<td>0.097</td>
<td>23.4</td>
</tr>
<tr>
<td>CHN82-11PC (3209 m)</td>
<td>74–76 (G)</td>
<td>12.51</td>
<td>2.68</td>
<td>0.131</td>
<td>3.2</td>
</tr>
<tr>
<td>CHN82-11PC (3209 m)</td>
<td>74–76 (G)</td>
<td>13.82</td>
<td>2.59</td>
<td>0.132</td>
<td>5.1</td>
</tr>
<tr>
<td>CHN82-11PC (3209 m)</td>
<td>78–80 (G)</td>
<td>10.39</td>
<td>3.14</td>
<td>0.115</td>
<td>4.3</td>
</tr>
<tr>
<td>CHN82-11PC (3209 m)</td>
<td>78–80 (G)</td>
<td>10.99</td>
<td>2.24</td>
<td>0.112</td>
<td>3.9</td>
</tr>
<tr>
<td>CHN82-11PC (3209 m)</td>
<td>78–80 (H)</td>
<td>15.66</td>
<td>2.25</td>
<td>0.123</td>
<td>20.3</td>
</tr>
<tr>
<td>CHN82-11PC (3209 m)</td>
<td>78–80 (G)</td>
<td>13.95</td>
<td>2.20</td>
<td>0.121</td>
<td>17.0</td>
</tr>
<tr>
<td>CHN82-11PC (3209 m)</td>
<td>78–80 (G)</td>
<td>19.82</td>
<td>1.75</td>
<td>0.117</td>
<td>19.5</td>
</tr>
<tr>
<td>CHN82-11PC (3209 m)</td>
<td>78–80 (G)</td>
<td>60–65 (G)</td>
<td>9.40</td>
<td>1.62</td>
<td>0.109</td>
</tr>
<tr>
<td>CHN82-11PC (3209 m)</td>
<td>74–76 (G)</td>
<td>18.03</td>
<td>4.77</td>
<td>0.077</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Table Notes:

- Bold C. wuellerstorfi values are believed to be contaminated and are excluded from calculations; nm indicates that element was not measured due to insufficient sample volume.
- Holocene samples are indicated by H, and LGM samples are indicated by G.
- Sample depths are composite; actual sample IDs are 980C-2H-01, 63–64 cm and 84–86 cm.
- C. kullenbergi and C. pachyderma Zn/Ca values may all be contaminated, or these species may have very high Zn partition coefficients.

References:

2. C. kullenbergi and C. pachyderma Zn/Ca values may all be contaminated, or these species may have very high Zn partition coefficients.
Table 3. Circulation Model Parameters for Four Deepest Cores

<table>
<thead>
<tr>
<th>Core</th>
<th>Depth</th>
<th>Local Cd</th>
<th>Local Zn</th>
<th>Aged NADW Cd</th>
<th>Aged NADW Zn</th>
<th>NADW Cd Aging</th>
<th>NADW Zn Aging</th>
<th>Proportion SOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>V29-202</td>
<td>2658</td>
<td>0.208</td>
<td>1.36</td>
<td>0.202</td>
<td>1.28</td>
<td>0.042</td>
<td>0.19</td>
<td>0.013</td>
</tr>
<tr>
<td>CHN82-20</td>
<td>3070</td>
<td>0.245</td>
<td>1.73</td>
<td>0.218</td>
<td>1.35</td>
<td>0.058</td>
<td>0.26</td>
<td>0.060</td>
</tr>
<tr>
<td>CHN82-11</td>
<td>3209</td>
<td>0.248</td>
<td>1.78</td>
<td>0.216</td>
<td>1.34</td>
<td>0.056</td>
<td>0.25</td>
<td>0.070</td>
</tr>
<tr>
<td>CHN82-4</td>
<td>3427</td>
<td>0.248</td>
<td>1.88</td>
<td>0.203</td>
<td>1.28</td>
<td>0.043</td>
<td>0.19</td>
<td>0.095</td>
</tr>
</tbody>
</table>

Preformed

<table>
<thead>
<tr>
<th>Core</th>
<th>Depth</th>
<th>Cd/Ca</th>
<th>Cd/Ca</th>
<th>Preformed NADW Cd</th>
<th>Preformed NADW Zn</th>
<th>Predicted Zn/Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>V29-202</td>
<td>2658</td>
<td>0.099</td>
<td>0.380</td>
<td>0.334</td>
<td>1.64</td>
<td>1.64</td>
</tr>
<tr>
<td>CHN82-20</td>
<td>3070</td>
<td>0.122</td>
<td>0.422</td>
<td>0.348</td>
<td>1.67</td>
<td>1.94</td>
</tr>
<tr>
<td>CHN82-11</td>
<td>3209</td>
<td>0.152</td>
<td>0.523</td>
<td>0.456</td>
<td>1.93</td>
<td>2.20</td>
</tr>
<tr>
<td>CHN82-4</td>
<td>3427</td>
<td>0.168</td>
<td>0.578</td>
<td>0.526</td>
<td>2.03</td>
<td>2.39</td>
</tr>
</tbody>
</table>

Aging

<table>
<thead>
<tr>
<th>Core</th>
<th>Depth</th>
<th>Cd/Ca</th>
<th>Cd/Ca</th>
<th>NADW Cd Aging</th>
<th>NADW Zn Aging</th>
<th>Predicted Zn/Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>V29-202</td>
<td>2658</td>
<td>0.099</td>
<td>0.380</td>
<td>0.216</td>
<td>0.78</td>
<td>1.94</td>
</tr>
<tr>
<td>CHN82-20</td>
<td>3070</td>
<td>0.122</td>
<td>0.422</td>
<td>0.246</td>
<td>0.85</td>
<td>2.27</td>
</tr>
<tr>
<td>CHN82-11</td>
<td>3209</td>
<td>0.152</td>
<td>0.523</td>
<td>0.352</td>
<td>1.10</td>
<td>2.56</td>
</tr>
<tr>
<td>CHN82-4</td>
<td>3427</td>
<td>0.168</td>
<td>0.578</td>
<td>0.409</td>
<td>1.23</td>
<td>2.82</td>
</tr>
</tbody>
</table>

Mixing

<table>
<thead>
<tr>
<th>Core</th>
<th>Depth</th>
<th>Cd/Ca</th>
<th>Cd/Ca</th>
<th>Proportion SOW</th>
<th>Predicted Zn/Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>V29-202</td>
<td>2658</td>
<td>0.099</td>
<td>0.380</td>
<td>0.382</td>
<td>3.67</td>
</tr>
<tr>
<td>CHN82-20</td>
<td>3070</td>
<td>0.122</td>
<td>0.422</td>
<td>0.451</td>
<td>4.15</td>
</tr>
<tr>
<td>CHN82-11</td>
<td>3209</td>
<td>0.152</td>
<td>0.523</td>
<td>0.677</td>
<td>5.54</td>
</tr>
<tr>
<td>CHN82-4</td>
<td>3427</td>
<td>0.168</td>
<td>0.578</td>
<td>0.804</td>
<td>6.32</td>
</tr>
</tbody>
</table>

Mixing, Accounting for ΔCO_3^{2-}

<table>
<thead>
<tr>
<th>Modern $[CO_3^{2-}]$</th>
<th>Modern ΔCO_3^{2-}</th>
<th>Aged NADW $[CO_3^{2-}]$</th>
<th>LGM $[CO_3^{2-}]$</th>
<th>LGM ΔCO_3^{2-}</th>
<th>Predicted D_{zn}</th>
<th>Predicted Zn/Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>29</td>
<td>100.3</td>
<td>92.5</td>
<td>21.5</td>
<td>8.48</td>
<td>3.11</td>
</tr>
<tr>
<td>102</td>
<td>23</td>
<td>103.4</td>
<td>92.8</td>
<td>13.8</td>
<td>7.32</td>
<td>3.04</td>
</tr>
<tr>
<td>104</td>
<td>23</td>
<td>105.8</td>
<td>88.3</td>
<td>7.3</td>
<td>6.35</td>
<td>3.52</td>
</tr>
<tr>
<td>107</td>
<td>23</td>
<td>109.9</td>
<td>85.8</td>
<td>1.8</td>
<td>5.52</td>
<td>3.49</td>
</tr>
</tbody>
</table>

a Modern NADW preformed Cd is 0.160 nmol kg$^{-1}$, and preformed Zn is 1.09 nmol kg$^{-1}$. Aged SOW end-member Cd is 0.669 nmol kg$^{-1}$, and Zn is 7.55 nmol kg$^{-1}$. For each model, parameters in italics are solved for by holding other parameters constant (see text). Dissolved Cd and Zn are given in nmol kg$^{-1}$; Cd/Ca and Zn/Ca are in μmol mol$^{-1}$; and $[CO_3^{2-}]$ and ΔCO_3^{2-} are in μmol kg$^{-1}$.

b Cd/Ca values are as measured in LGM C. wuellerstorfi.

c Zn/Ca predictions assume $D_{zn} = 9$, except for final scenario where ΔCO_3^{2-} is accounted for.

d Glacial SOW end-member $[CO_3^{2-}]$ is assumed to have been 80 μmol kg$^{-1}$.
Figure 6. Dissolved P and Si measurements from nine North Atlantic GEOSECS stations [Bainbridge, 1981]. Data begin (lower left) near the region of deep convection in the Greenland Sea (station 16, 72°N, 8°W, ~1–1300 m), then follow the “core” of NADW as far south as station 1 (45°S, ~5500 m); equivalent Cd and Zn concentrations are 0.67 and 7.6 nmol kg⁻¹ (Figure 7a). We recognize that these waters are too dense to be a true end-member for our cores, but their nutrient content is a best estimate for “pure” SOW. These values are slightly aged relative to Broecker et al.’s [1991] Southern Component Water (SCW; P ≈ 2.19 μmol kg⁻¹, Si ≈ 120 μmol kg⁻¹).

4.4. Three Glacial Circulation Models

[22] The modern aged NADW end-member appropriate for CHN82-20 is determined by extrapolating the mixing line between aged SOW and the core site to the NADW aging line (Figure 7a). This gives a Cd concentration of ~0.22 nmol kg⁻¹ and a Zn concentration of ~1.4 nmol kg⁻¹, equivalent to the P and Si values of Broecker et al.’s [1991] NCW. By this scheme, modern waters at CHN82-20 are about 6% SOW. This is similar to Broecker et al.’s [1991] estimate based on the conservative tracer PO₄, which puts the region of CHN82-20 about midway between the 0% and 10% SCW contours.

[21] Mixing at each of our four deepest cores is modeled as the simple combination of two end-members, NADW and SOW, both of which are aged beyond their preformed values prior to mixing. We do not attempt to deal with the effects of diffusion and diapycnal mixing. It is difficult to choose an appropriate aged SOW end-member because SOW aging is strongly masked by mixing with NADW in the modern ocean. We choose the maximum P and Si concentrations found in the Atlantic before dilution with NADW (~2.32 and 130 μmol kg⁻¹, respectively, at ~45°S, >5500 m); equivalent Cd and Zn concentrations are 0.67 and 7.6 nmol kg⁻¹ (Figure 7a). We recognize that these waters are too dense to be a true end-member for our cores, but their nutrient content is a best estimate for “pure” SOW. These values are slightly aged relative to Broecker et al.’s [1991] Southern Component Water (SCW; P ≈ 2.19 μmol kg⁻¹, Si ≈ 120 μmol kg⁻¹).
properties [Oppo and Fairbanks, 1987]. Although Southern Ocean Cd/Ca data suggest no significant difference from today [Boyle, 1992; Boyle and Rosenthal, 1996] (implying a δ^{13}C$_{\text{ps}}$ change), it is conceivable that some of these values are reduced by a ΔCO$_2$ artifact [McCorkle et al., 1995]. If the glacial δ^{13}C drop indeed reflects an increase in SOW nutrients, then the SOW Zn:Cd coordinates in Figure 7b would migrate to the upper right; this would have the same effect as unaccounted-for SOW aging, with little impact on our results (see section 4.5). Another possibility is that ΣCO$_2$ accumulated in the deep Southern Ocean independent of nutrients [Toggweiler, 1999], leading to lower δ^{13}C without higher Cd or Zn.

We assume that the glacial NADW aging process followed the same kinked Zn:Cd trend as today. One might argue that since little aging is observed within modern NADW, the modern deep Pacific would offer a better analog for hypothesized glacial NADW aging. We contend that the steeper Zn:Cd aging slope of the modern Pacific depends to a large degree on a greater supply of Zn to the surface ocean (and its subsequent removal by biogenic particles). Therefore if glacial North Atlantic preformed nutrients were as low as today (as assumed in the increased aging and mixing scenarios below), or if the preformed Zn:Cd ratio remained low (as argued in the preformed nutrients scenario below), then modern NADW is a better analog for aging than the deep Pacific.

A final source of uncertainty concerns the glacial whole-ocean inventories of Cd and Zn. If one or both were very different from today, then our various assumptions for the LGM scenarios would be violated. Boyle [1992] estimated that the LGM Cd inventory was perhaps 10% lower, but noted that the uncertainty is of the same order as the estimate. Aside from the North Atlantic data presented here, the only Zn/Ca measurements for the glacial ocean are from two cores in the deep eastern equatorial Pacific [Marchitto et al., 2001]. Comparison to paired Cd/Ca measurements suggests that LGM Zn concentrations were probably within \pm25% of modern levels. To the extent that deep equatorial Pacific waters reflect the global ocean, our best guess is that

Figure 7. (a) Modern mixing diagram for the site of core CHN82-20PC. Dissolved P and Si data from Figure 8 have been converted to Cd and Zn, respectively (small squares). The CHN82-20PC coordinates (diamond) are taken from P and Si at GESECS station 27 (42°N, 42°W) [Bainbridge, 1981]. The “aged SOW” end-member (large square) is taken from GESECS station 67 (45°S, 51°W, >5500 m). The “aged NADW” end-member that is appropriate for CHN82-20PC is calculated by extending the mixing line between SOW and the core site (dashed line) to the NADW aging line. (b) LGM mixing diagram for core CHN82-20PC. The LGM Cd$_w$ value in this core is shown by the vertical dotted line. The two circles in the lower left corner are the modern preformed and aged NADW end-members, as in Figure 7a. The remaining dashed lines show the three glacial circulation scenarios discussed in the text. The intersection of these lines with the Cd$_w$ line gives predicted seawater Zn concentrations (diamonds).
the global Zn inventory was not drastically different from
today. Clearly this assumption will require additional ver-
ification in the future.

4.4.1. Increased preformed nutrients

[27] To model the first LGM scenario, increased pre-
formed nutrients, NADW aging and SOW mixing are held
at modern levels. At CHN82-20 this means a Cd aging of
0.06 nmol kg\(^{-1}\) over the unspecified preformed value and a
6% admixture of SOW. These constraints require a pre-
formed Cd concentration of 0.35 nmol kg\(^{-1}\), more than
double the modern value, to yield a glacial Cd concentration
of 0.42 nmol kg\(^{-1}\) (based on the measured Cd/Ca value).
Algebraically,

\[
0.94(p + 0.06) + 0.06(0.67) = 0.42
\]

where 0.94 and 0.06 are the proportions of NADW and
SOW, p is the NADW preformed Cd concentration, 0.06 is
the aging component, and 0.67 is the SOW Cd concentra-
tion. The only logical source for such elevated preformed
NADW nutrients (aside from upwelled deep SOW) is
midlatitude intermediate waters, where Cd concentrations
of ~0.35 nmol kg\(^{-1}\) (P = 1.5 \(\mu\)mol kg\(^{-1}\)) are found as far north
as 27°N today [Bainbridge, 1981] (see Figure 1). This
general region supplies the “feed water” for modern
NADW [Broecker and Peng, 1982]. However, the available
LGM (non-Heinrich) Cd/Ca data from the mid to low-
latitude North Atlantic suggest that intermediate and shallow
waters were depleted in Cd relative to today
[Boyle, 1992; Marchitto et al., 1998; Williamowski and
Zahn, 2000; Zahn and Stu¨ber, 2002]. It is therefore difficult
to imagine how high Cd concentrations could have
extended to the shallow, higher latitude North Atlantic
without impacting lower latitudes.

[28] Regardless of the hypothetical route, concomitant
preformed NADW Zn increases can be estimated by looking
to Zn:Cd ratios in the presumed source (midlatitude
intermediate waters). In the modern ocean, a Cd concentra-
tion of 0.35 nmol kg\(^{-1}\) is expected to be accompanied by
a Zn concentration of only ~1.7 nmol kg\(^{-1}\) (see Figure 1).
This low Zn:Cd ratio is predominately set by the differential
regeneration depths of the two elements (i.e., these waters
collect much more regenerated Cd than Zn). The relatively
high Zn:Cd ratio in Antarctic Intermediate Water (AAIW)
have little influence because of AAIW’s minor contribution
to Northern Hemisphere waters (<10% above 20°N [Wüst,
1935; Broecker and Takahashi, 1981]), and it appears to
have had no greater influence at the LGM [Boyle, 1992;
Marchitto et al., 1998; Williamowski and Zahn, 2000; Zahn
and Stu¨ber, 2002]. We therefore take the modern value of
1.7 nmol kg\(^{-1}\) as a reasonable estimate for the LGM
preformed Zn concentration. Note that the influence of
AAIW may have increased during Heinrich events [Wilia-
mowski and Zahn, 2000; Zahn and Stu¨ber, 2002], though
we suspect that the differential biogeochemistry of Zn and
Cd still kept the Zn:Cd ratio of North Atlantic intermediate
waters relatively low.

[29] Since our inferred LGM preformed concentrations
are beyond the presumed kink in the Zn:Cd aging relationship,
we convert the constant NADW Cd aging (0.06 nmol kg\(^{-1}\)
below the preformed value) to equivalent Zn aging
(0.1 nmol kg\(^{-1}\)) using the post-kink slope (\(\Delta Zn = 2.38 \Delta Cd\))
(Figure 7b). By again assuming constant mixing (6%
SOW), the resulting LGM Zn concentration at CHN82-20

\[
0.94(1.7 + 0.1) + 0.06(7.6) = c
\]

where c is the CHN82-20 Zn concentration, equal to
2.2 nmol kg\(^{-1}\) (Figure 7b). Thus the maximum (~\(D_{zn} = 9\)
LGM Zn/Ca value predicted by this circulation scenario is
1.9 \(\mu\)mol mol\(^{-1}\). This is about 40% lower than the
measured value of 3.07 ± 0.17 \(\mu\)mol mol\(^{-1}\).

4.4.2. Increased NADW aging

[30] For the second LGM scenario, increased NADW
aging, preformed nutrients are held constant (Cd = 0.16
nmol kg\(^{-1}\)) and mixing with SOW is again held constant (6%
SOW). The amount of Cd addition from remineralization
within the North Atlantic (aging) required to reach the LGM
concentration at CHN82-20 is therefore 0.25 nmol kg\(^{-1}\),
more than four times the modern estimate:

\[
0.94(0.16 + a) + 0.06(0.67) = 0.42
\]

Assuming that Zn was added along with Cd following the
kinked aging trend (\(\Delta Zn = 4.55 \Delta Cd\) below Cd = 0.28 nmol
kg\(^{-1}\) and \(\Delta Zn = 2.38 \Delta Cd\) above), this suggests that Zn
increased by ~0.8 nmol kg\(^{-1}\) over the constant preformed
value of 1.1 nmol kg\(^{-1}\). The result is a CHN82-20
concentration of 2.3 nmol kg\(^{-1}\) (Figure 7b):

\[
0.94(1.1 + 0.8) + 0.06(7.6) = c
\]

This circulation scheme therefore predicts that LGM Zn/Ca
at CHN82-20 should be no higher than 2.0 \(\mu\)mol mol\(^{-1}\) (for
\(D_{zn} = 9\)), similar to the estimate from the first model.

4.4.3. Increased mixing with SOW

[31] The final circulation scenario, increased mixing with
SOW, has the potential to result in significantly higher Zn
concentrations at CHN82-20. This is because deep SOW
contains much more Zn than North Atlantic intermediate
and surface waters, which were the sources of increased
nutrients in the first two schemes. For the increased mixing
model, preformed nutrients and NADW aging are both held
constant. These constraints require a 45% contribution from
SOW to give the LGM Cd concentration at CHN82-20:

\[
(1 - S)(0.16 + 0.06) + S(0.67) = 0.42
\]

This dramatic SOW increase predicts a CHN82-20 Zn
concentration of 4.1 nmol kg\(^{-1}\) (Figure 7b):

\[
0.55(1.1 + 0.3) + 0.45(7.6) = c
\]

where the Zn aging component (0.3 nmol kg\(^{-1}\)) is based on
the prekink Zn:Cd slope (\(\Delta Zn = 4.55 \Delta Cd\)).

[32] The resulting maximum (~\(D_{zn} = 9\) Zn/Ca value is
therefore 3.7 \(\mu\)mol mol\(^{-1}\), almost double the previous two
predictions. However, because \(D_{zn}\) is a function of \(A\text{CO}_3^2\)
[Marchitto et al., 2000], the increased influence of low-CO\(_3^2\)
SOW would be expected to reduce this number somewhat.
The modern CO\(_3^2\) concentration at CHN82-20 is ~102
\(\mu\)mol kg\(^{-1}\) (calculated from nearest GEOSECS data). An
increase in the admixture of SOW (CO\(_3^2\) ≈ 80 \(\mu\)mol kg\(^{-1}\),
assumed to be roughly the same as today) from the modern 6% to the glacial 45% would lower CHN82-20 to $/C_{24}^9$ mol kg$^{-1}$. Thus $D_{CO_3^{2-}}$ would have dropped from 23 μmol kg$^{-1}$ to \sim14 μmol kg$^{-1}$ (assuming negligible change in $[CO_3^{2-}]_{saturation}$); this corresponds to a D_{Zn} of 7.3 and a predicted Zn/Ca of 3.0 μmol mol$^{-1}$, indistinguishable from the measured value (3.07 ± 0.17 μmol mol$^{-1}$).

4.5. Zn/Ca Data and Model Comparison

In Figure 8, measured Zn/Ca values from all four deep cores are compared to values predicted by each of the three glacial circulation models. The first two models (increased preformed nutrients and increased aging) clearly underestimate Zn/Ca at all depths. Maximum predictions of the mixing model ($D_{Zn} = 9$) significantly overestimate Zn/Ca in the three deepest cores and underestimate it in the 2658 m core. However, predictions are in good agreement with the three deepest cores when the effect of reduced CO$_3^{2-}$ concentration is incorporated into the mixing model.

It is possible that the single glacial analysis at 2658 m is affected by Zn contamination.

Overall, the combined Cd/Ca and Zn/Ca data strongly argue for the increased influence of SOW during the LGM. Estimates range from 38% SOW at 2658 m to 80% SOW at 3427. Because the mixing model does not adequately account for SOW aging within the glacial Atlantic (nor a possible increase in preformed SOW), these numbers are more relative than absolute. In other words, by the time it got to \sim42°N, the true nutrient content of aged glacial SOW was probably somewhat higher than the chosen end-member composition, meaning that 80% is likely an overestimate of the actual mixing. This uncertainty should have a small effect on the seawater Zn concentrations predicted from Cd/Ca (equation 7) because a lower SOW percentage would be compensated by a higher SOW Zn value.

The most likely explanation for the increased admixture of SOW in the deep North Atlantic is a reduction in NADW formation, though clearly not a cessation. This reduction appears to have been at least partially balanced by the formation of GNAIW. Sedimentary 231Pa/230Th ratios suggest that the rate of GNAIW export to CPDW was similar to or even slightly greater than that of modern NADW [Yu et al., 1996]. In contrast, Lynch-Stieglitz et al. [1999] argue that a large glacial reduction in Gulf Stream transport through the Florida Straits (calculated from benthic δ18O using the geostrophic method) was probably caused by a near cessation of southward deep/intermediate water flow, implying very weak GNAIW transport. In either case, glacial cooling in the North Atlantic would have been compounded because GNAIW was a less efficient “heat pump” than NADW is [Rahmstorf, 1994]. The forcing for this rearrangement is believed to have been lowered North Atlantic sea surface salinities, resulting in lower densities for sinking waters [Broecker et al., 1985]. However, the deep ocean paleonutrient data only address the relative influences of northern and southern components [Boyle and Keigwin, 1982]. It is therefore possible that the main forcing actually occurred in the Southern Ocean, with increased AABW production displacing NADW to a shallower level, though it is unclear what effect this might have had on North Atlantic climate. We favor the conventional view of North Atlantic salinity forcing because it is strongly supported by ocean circulation models [e.g., Stocker and Wright, 1991; Mikolajewicz and Maier-Reimer, 1994;
First, as mentioned above, the kinked Cd:P relationship of Boyle [1988] could be replaced with the Atlantic curve of Elderfield and Rickaby [2000]. For all three LGM scenarios, the Zn/Ca predictions based on Cd/Ca would be slightly higher with the curved model (SOW end-member Cd is not recalculated because modern Southern Ocean waters are better described by the kinked model). Zn/Ca differences from the kinked model would be +7–8% for the preformed scenario and +7–11% for the aging scenario. In each case, model predictions would still be significantly lower than observed Zn/Ca values (see Figure 8). The increased mixing with SOW scenario would rise by just 2–6% (assuming a D_{Zn} of 9), or +1–5% after accounting for reduced ΔCO_3^{2-}.

[38] Second, rather than using the CdW values calculated directly from LGM Cd/Ca, one could calculate the CdW difference between LGM and Holocene samples and then add that to the modern Cd predicted from P. This strategy might be valid if the Holocene data, which are slightly higher than predicted, are indicative of some foraminiferal offset that also applies to the glacial data (we consider it more likely that the Holocene samples that we have measured are not quite characteristic of modern conditions, due to slow sedimentation rates and missing core tops). Zn/Ca predictions of all three scenarios would be lower using this LGM-Holocene difference method. For the preformed (6–13% decrease) and aging (4–12% decrease) scenarios, predictions would be even farther away from measured values. For increased mixing with SOW, Zn/Ca predictions using a partition coefficient of 9 would be 10–36% lower than before and inferred SOW percentages would drop to 17–58%. Measured Zn/Ca values in the three deepest cores are only slightly lower than these predictions and therefore would require little lowering of ΔCO_3^{2-}. Thus the data would still argue strongly for the presence of SOW, but evidence for the expected drop in $[\text{CO}_3^{2-}]$ would be lacking.

5. Conclusions

[39] C. wuellerstorfi Cd/Ca data from the North Atlantic suggest large increases in deep water nutrient contents during the LGM. In theory, such changes could have resulted from: (1) increased preformed nutrients in the high-latitude North Atlantic; (2) increased aging of lower NADW; or (3) decreased relative production of NADW and greater mixing with SOW. Zn/Ca data from the same samples are too high to be explained by the first two mechanisms. They require that SOW was a major contributor to the glacial North Atlantic deeper than about 2500 m, consistent with a partial replacement of NADW by GNAIW. However, since the paleonutrient data only address relative influences of NADW and SOW, an increase in AABW formation could have also contributed. With this increased SOW influence came a significant lowering of deep North Atlantic CO_3^{2-} concentrations, on the order of 10 to 15 μmol kg$^{-1}$.

[40] Although previous interpretations of δ^{13}C, Cd/Ca, and Ba/Ca data appear to be generally valid in terms of reduced NADW formation during the LGM, much com-
plexity remains. A better understanding of the effects of ∆CO₂ on benthic foraminiferal chemistry [McCorkle et al., 1995; Marchitto et al., 2000] is essential for reconstructing the details of glacial deep circulation. Further research into the controls on planktonic foraminiferal Cd/ Ca and δ¹³C would also be useful for constraining glacial δ¹³C, which is crucial for interpreting benthic δ¹³C data. Finally, the LGM Zn/Ca data presented here are the first published measurements for the pre-Holocene deep ocean (excepting a single glacial Pyrgo measurement by Boyle [1981]). Future estimates of the glacial oceanic inventory of dissolved Zn, perhaps bolstered by Zn/Si measurements in biogenic opal [Ellwood and Hunter, 2000], are therefore required to confirm and define our results.

[41] Acknowledgments. We thank M. Jeglinski, D. Ostermann, and L. Zhou for assistance with core sampling and stable isotope analyses. E. Boyle, L. Keigwin, J. Lynch-Stieglitz, D. McCorkle, R. Zahn, and two anonymous reviewers contributed valuable comments and discussions that improved this manuscript. R/V Chain cores are curated at WHOI with support from the National Science Foundation, the Office of Naval Research, and the United States Geological Survey. R/V Vema cores are curated at LDEO with support from the National Science Foundation and the Office of Naval Research. This work was supported by a JOR/USASC Ocean Drilling Fellowship (JSG-CY 12-4), the R. H. Cole Ocean Ventures Fund, and the National Science Foundation (grant OCE-9503135 to W. Curry and grant OCE-9633499 to D. Oppo). This is LDEO contribution number 6310 and WHOI contribution number 10667.

References

Broecker, W. S., D. M. Petaet, and D. Rind, Does the ocean-atmosphere system have more than one stable mode of operation?, Nature, 315, 21–25, 1985.
Mackensen, A., H.-W. Hubberten, T. Bickert, G. Fischer, and D. K. Fütterer, The δ¹³C in

