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ABSTRACT

Studies of the Santa Barbara Basin off the coast of California have linked changes
in its bottom-water oxygen content to millennial-scale climate changes as recorded by the
oxygen isotope composition of Greenland ice. Through the use of detailed records from a
sediment core collected off the Magdalena Margin of Baja California, Mexico, we dem-
onstrate that this teleconnection predominantly arose from changes in marine productiv-
ity, rather than changes in ventilation of the North Pacific, as was originally proposed.
One possible interpretation is that the modern balance of El Nifio-La Nifia conditions
that favors a shallow nutricline and high productivity today and during warm climate
intervals of the past 52 k.y. was altered toward more frequent, deep nutricline, low pro-
ductivity, ElI Nifio-ike conditions during cool climate intervals.

Keywords: millennial-scale climate, abrupt climate change, foraminifera, marine productivity,

paleo-ENSO variability.

INTRODUCTION

Phytoplankton in marine eastern boundary currents like the Cal-
ifornia Current (Fig. 1A) flourish owing to elevated nutrient concen-
trations resulting from wind-driven coastal upwelling (Huyer, 1983;
Thomeas et a., 2001). These regions exhibit significantly reduced pri-
mary productivity during EI Nifio years when alongshore winds are
not only weaker (Mantua et a., 2002) but, more significantly, the nu-
trient concentrations in the upwelled source water are lowered by a
deepening of the thermocline (Chavez et al., 2002).

On longer time scales, the sensitivity of the region to climate
change has been established by spectacular records from the Santa
Barbara Basin off the coast of central California, where sediment ac-
cumulates at a rate of ~170 cm/k.y. and modern conditions are nearly
anoxic (Kennett and Ingram, 1995). Under such conditions, millimeter-
scale laminations reflecting seasonal variations in sediment composi-
tion are preserved because burrowing benthic fauna that stir the sedi-
ment cannot survive (Soutar and Crill, 1977). Behl and Kennett (1996)
argued that, in contrast, oxic conditions led to bioturbation during cli-
mate intervals cooler than today such as the Younger Dryas, marine
isotope stage 2, and the stadial events of marine isotope stage 3, which
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extended from ca. 60 ka to 29 ka. A key feature of the Santa Barbara
Basin record is the occurrence of 17 zones of preserved laminations
during marine isotope stage 3, each ~1 k.y. in duration. The timing
of these laminations corresponds to the warm interstadial events iden-
tified by using various climate proxies extracted from Greenland ice
(Grootes et a., 1993). Because the source waters on the open margin
that supply the basin reside within the North Pacific oxygen-minimum
zone (Fig. 1B), the prevailing interpretation of the interstadial events
recorded by the laminations in the basin has been that they arose from
decreases in North Pacific ventilation (Behl and Kennett, 1996; Can-
nariato and Kennett, 1999). Here we challenge this interpretation
through the use of a series of detailed proxy records from a site on the
Magdalena Margin off Baja California, ~1500 km south of the Santa
Barbara Basin.

RESULTS

In November 1999, a 15 m composite section of alternating lam-
inated and bioturbated sediment consisting of gravity core MV99-
GC3L1 and piston core MV 99-PC08 was raised onboard the RV Melville
from a depth of 700 m (van Geen et a., 2001). The MagdalenaMargin
site is located within the oxygen-minimum zone under bottom-water
oxygen concentrations of 2 pmol/kg. A total of 16 accelerator mass
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Figure 1. Controls on sedimentary organic carbon off Baja Califor-
nia. Left: Annually averaged phytoplankton pigment (mg/m?) in
North Pacific based on satellite-derived Chl-a data from 1998 to 2002
provided by SeaWiFS Project, National Aeronautics and Space Ad-
ministration (NASA) Goddard Space Flight Center and ORBIMAGE.
Right: Annually averaged dissolved oxygen (mmol/kg) on 27.1¢,
density surface (which corresponds to depth of Baja California
study site) based on data from Levitus and Boyer (1994). Locations
of cores from Baja site (MV99), Santa Barbara Basin (Ocean Drilling
Program [ODP] Site 893), and Greenland Ice Sheet Project 2 (GISP2)
are labeled in white. Data are plotted with Generic Mapping Tools
software (Wessel and Smith, 1998).

spectrometry (AMS) 14C dates measured on the tests of benthic fora-
minifera indicates, after conversion to calendar years (van Geen et a.,
2003), a remarkably constant sedimentation rate of ~30 cm/k.y. over
the past 35 k.y. (Fig. 2). Sedimentation rates are constant here despite
changes in sedimentary organic carbon (Fig. 3B) and carbonate content
(Fig. 3C) due to a compensating decrease in sedimentary dry bulk
density in intervals with high organic carbon (C,g) content. Compar-
ison of the onset of Holocene laminations in the two cores of the
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Figure 2. Age model, based on three types of data, for Baja Califor-
nia composite section. Solid squares—calendar year—corrected ac-
celerator mass spectrometer (AMS) *“C dates from van Geen et al.
(2003). Open circles—stratigraphic picks corresponding to tops of
warm interstadial (IS) events identified in diffuse spectral reflectance
(DSR)-3 record by using Greenland Ice Sheet Project 2 (GISP2) age
model of Grootes et al. (1993). Open triangles—stratigraphic picks
corresponding to bottoms of warm interstadial events identified in
DSR-3 record by using GISP2 age model of Grootes et al. (1993).
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Figure 3. Climate records for past 52 k.y. A: Greenland Ice Sheet
Project 2 (GISP2) 80 values from Grootes et al. (1993) plotted as
function of calendar age. Labels indicate interstadial (IS) events 1—
14 as identified by Grootes et al. (1993). B: Diffuse spectral reflec-
tance (DSR) factor 3 at 1 cm resolution from cores GC31 (gray line)
and PCO08 (black line) off Baja California, plotted against meters
composite depth (mcd). Labels indicate interstadial events 1-14. Es-
timates of organic carbon (circles) by difference of total carbon and
total inorganic carbon using data generated by U.S. Geological Sur-
vey (USGS) are shown for comparison. C: DSR factor 1 at 1 cm
resolution from cores GC31 (gray line) and PCO08 (black line). Cal-
cium carbonate data (triangles) generated by USGS are shown for
comparison. D: Lithology for Baja California composite section.
Laminated intervals are indicated by shaded bars. YD—Younger
Dryas; B/A—Bglling-Allergd.

composite section and comparison with the most recent pattern of lam-
inations recorded by a multicore from the same location indicate aloss
of 0.25 m from the top of the gravity core and 1.81 m from the top
of the piston core relative to the top of the multicore because of coring
(Fig. 3B).

The age model for the Bagja California cores was extended further
back in time by using shipboard diffuse spectral reflectance (DSR)
measured at 1 cm resolution on freshly split cores with a Minolta CM-
2022 spectrophotometer (Figs. 2 and 3). Previous work has shown that
DSR color spectra can be related to bulk sediment composition in many
environments (Balsam and Deaton, 1991; Mix et al., 1999; Ortiz et a.,
1999). For the Baja California record, a three-component R-mode fac-
tor model of the first-derivative transform of the percent reflectance
spectra accounts for >93% of the data variance. DSR factor 3, which
accounts for 10% of the variance, bears a striking resemblance to the
3180 record preserved in the Greenland Ice Sheet Project 2 (GISP2)
ice core (Grootes et al., 1993) and to the C,,4 content of the core (Figs.
3A, 3B). DSR factor 1, which accounts for 60% of the variance, relates
to the calcium carbonate content of the core (Fig. 3C). Minimain the
DSR factor 1 record correspond to low carbonate values during inter-
stadial events. An extended age model, based on the assumption that
the peaks and troughs in DSR factor 3 loadings correspond to warm
interstadial and cool stadial events 1-14 in the GISP2 ice core (Grootes
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et al., 1993), is entirely consistent with the radiocarbon data and in-
dicates that the sedimentation rate at this site has not varied appreciably
for the past 52 k.y. (Fig. 2). This Baja Cdifornia site is therefore
particularly well suited for studies of climate change.

DISCUSSION AND CONCLUSIONS

Comparison of the reflectance record and C,,y measurements from
the same core indicates that there is a positive correlation between the
DSR factor 3 loadings and the amount of plankton material that has
escaped mineralization in the water column or the sediment (Fig. 3B).
During the 52-30 ka interval in particular, peaks in DSR factor 3 cor-
respond closely in magnitude and shape to variations in both Cyq in
the same core and variations in 3180 in Greenland ice (Figs. 3A, 3B).
Carbonate content in the core is inversely correlated with C,,4 content
(Fig. 3C), reaching maximum values during cool glacia and stadial
climate intervals, as is typically seen in the California Current (e.g.,
Gardner et al., 1997). This suggests greater carbonate dissolution dur-
ing organic-rich interstadial events.

But does the increase in C,,4 concentration reflect an increase in
export production or an enhancement of sedimentary C,q preserva-
tion? To evaluate whether the northeast Pacific pattern of increased
Corg Content and intermittent laminations during warm interstadial cli-
mate intervals was primarily driven by changes in productivity or ven-
tilation, two additional proxies based on the carbonate fraction were
measured in the Baja California cores. At a depth resolution of as much
as 5 cm (equal to an ~170 yr interval), a calibrated volume of sediment
was washed and sieved to determine the concentration of benthic fo-
raminifera (primarily Bolivina and Uvigerina species) and carbonate
fragments from broken tests of foraminifera (primarily planktonic Glo-
bigerina and Neogloboquadrina species) per gram of sediment. Pre-
vious work has documented the relationship between the flux of or-
ganic matter to the seafloor and the concentration of benthic
foraminifera per gram of sediment (Herguera and Berger, 1994). At the
Baja California site there is a striking correspondence between this
measure of export production and DSR factor 3: maxima in factor
loadings and Cq correspond to an almost 100-fold-higher benthic fo-
raminiferal concentration compared to intervening stadial periods
(Figs. 4A, 4B). This finding suggests that the productivity of surface
waters at this location along the northeast Pacific margin (Fig. 1) was
drastically lower during past cool stadials and the Last Glacial Maxi-
mum than it was during the Holocene and past warm episodes.

Could the benthic foraminiferal concentration variations be apres-
ervational artifact? Corrosive dissolution of calcium carbonate can re-
sult from the elevated supply of organic matter (Emerson and Bender,
1981). However, such a mechanism cannot explain our data because
the benthic foraminiferal concentration was actually higher during pe-
riods of elevated C,4 accumulation, despite poor overal carbonate
preservation (Fig. 4C). Alternatively, pore-water conditions that be-
came reducing enough to reach the sulfate reduction stage could have
enhanced carbonate preservation (Berger, 1970; Reimers et al., 1996;
Kuwabara et a., 1999). The foraminiferal fragmentation record, a stan-
dard indicator of carbonate dissolution (Berger, 1975), provides some
evidence against this explanation. The concentration of fragments per
gram, which varies by 10-fold, exhibits a weak positive correlation
with the benthic foraminiferal concentration per gram (Figs. 4B, 4C; r
= +0.51; p > 0.1; n = 33), a relation opposite to the one expected
if the preservation of benthic foraminifera had been controlled primar-
ily by sulfate reduction. These arguments suggest that variationsin the
DSR factor 3 record, C,q concentration, and benthic foraminiferal con-
centration per gram were driven primarily by large shiftsin the organic
productivity of the overlying waters.

What implications might these large shifts in organic production
have for the interpretation of the Santa Barbara Basin lamination
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Figure 4. Relationship between marine production and carbonate
dissolution off Baja California. A: Diffuse spectral reflectance (DSR)
factor 3 loadings from cores GC31 (black line) and PCO08 (gray line)
and concentration of benthic foraminifera per gram of sediment
(squares) plotted as function of meters composite depth (mcd) for
entire core. Interstadial events 5-10 as identified by Grootes et al.
(1993) are labeled for reference. B: Close-up of concentration of ben-
thic foraminifera per gram of sediment during interstadial events 5—
10. DSR factor 3 loadings (gray line) are plotted for reference. C:
Accumulation of foraminiferal fragments per gram of sediment dur-
ing interstadial events 5-10. DSR factor 3 loadings (gray line) are
plotted for reference.

record? Intensification of the northeast Pacific oxygen-minimum zone
due to a decrease in North Pacific intermediate-water ventilation has
generally been invoked to explain the laminations in the basin. Today,
however, the bottom-water oxygen content of the basin is significantly
reduced relative to its source waters on the adjacent margin because
of locally enhanced productivity (Reimers et a., 1996; van Geen et al .,
2003). Stott et al. (2000) also challenged the traditional interpretation
of the basin records by noting that the pattern of laminations in other
silled basins of the California Borderlands during recent decades ap-
pears to have been driven by variations in productivity. While the Cy,q
record from the Santa Barbara Basin lacks interstadial peaks, intersta-
dial maxima in the concentration of the upwelling-related planktonic
foraminifera G. bulloides provide evidence of increased production
within the basin during warm periods (Hendy and Kennett, 2000).
Likewise, high C,q accumulation during warm interstadial events is
observed in cores throughout the Oregon and California margins
(Gardner et a., 1997; Mix et a., 1999). Such evidence, combined with
our open-margin results from the Baja Cdlifornia site, suggests that
warm interstadial events, including present conditions, were associated
with elevated productivity over much of the northeast Pecific. Although
it may well be that ventilation of the northeast Pacific was also en-
hanced during cold periods and reduced during warm periods (Zheng

523



et al., 2000), it appears that this effect may have served only to mod-
ulate the effect of enhanced productivity on the intensity of the oxygen-
minimum zone in the northeast Pacific over the past 52 k.y. Such
modulation may explain occasional decoupling between the various
proxies (Fig. 3). Laminations in sediments off Bgja California, for ex-
ample, were preserved only during the Holocene and the more pro-
nounced interstadial events, when C,,, fluxes were particularly high.
In contrast, smaller interstadial events are represented by unlaminated
sediments. Overprints possibly driven by changes in ventilation may
aso explain why the scaling between DSR factor 3 and Cgg shifts
during marine isotope stage 2.

The inferred teleconnection between global climate and regional
productivity in the northeast Pacific may have significant implications
for understanding the dynamics of the North Pacific ocean-atmosphere
system on millennial time scales. Research on the response of the equa-
torial and North Pecific to the El Nifio-Southern Oscillation climate
cycle indicates that a deepening of the thermocline, and weakening of
the nutricline, provides one means to significantly reduce the produc-
tivity in this region during El Nifio years (Chavez et a., 2002). Pub-
lished 315N records from other locations along the California margin
(Emmer and Thunell, 2000; Kienast et al., 2002) suggest enhanced
denitrification during warm interstadial events and thus a potential NO3
deficit in interstadial surface waters relative to the stadial surface wa-
ters off Bgja California. Higher productivity indicated by our proxies
during such a nutrient regime thus implies the need for a greater nu-
trient flux to the surface waters during warm intervals to overcome this
deficit. We thus suggest a shift of the mean state toward more El Nifio—
like conditions with a regionally deepened nutricline as an important
factor distinguishing cool climate periods from warm periods such as
the Holocene. Such a model is consistent with current theories (Clem-
ent et al., 1999) and proxy reconstructions of the equatorial Pacific
(Koutavas et a., 2002; Stott et al., 2002).
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