XIII. natural variation of CO$_2$ and climate
Which has the longest time scale for carbon exchange with the atmosphere?

A. above ground terrestrial biosphere (tree trunks, leaves)
B. below ground terrestrial biosphere (soil/plant litter)
C. upper ocean
D. deep ocean
E. carbon in rocks
The ocean’s biological pump
• a) describes the photosynthetic uptake and downward settling of carbon in the ocean
• b) describes the removal carbon from the sunlit surface by respiration
• c) quickly returns carbon from the deep ocean to the ocean surface and atmosphere
• d) all of the above
• e) none of the above
clicker question

Organic carbon stored as fossil fuels can be oxidized to produce CO$_2$ and

• a) this happens naturally as a consequence of weathering

• b) this happens during combustion of fossil fuels by humans

• c) a) and b) are both true but a) happens faster

• d) a) and b) are both true but b) happens faster

• e) neither a) or b) are true
• carbon cycle includes the atmosphere, ocean, terrestrial biosphere and rock reservoirs
• each of the reservoirs influences the atmosphere on different time scales, depending on size of exchange and size of reservoir
• the terrestrial biosphere is responsible for seasonal variations in CO$_2$
• other reservoirs must be responsible for longer time scale changes in CO$_2$
• **human activity and burning of fossil fuels connects the very long time scale of the “rock cycle” with the much shorter time scales of the atmosphere, ocean and biosphere**
• emissions of CO$_2$ due to burning of fossil fuels have totaled ~250 GTC (by 1994) for since the 1800’s
• a bit more than half has remained in the atmosphere
• about half has been taken up by the oceans (this is good!)
• closing the C budget suggests that the terrestrial biosphere has been a net source of C to the atmosphere
• the uptake of fossil fuel derived CO$_2$ into the oceans has led to ocean acidification (the dissolution of CO$_2$ into water produces carbonic acid) which impacts carbonate-shelled organisms (bad!)
outline

• overview of Phanerozoic climate (last ~540 My)
• a mechanistic model of the long-term C-cyle
 - controls on C flows into and out of surface reservoirs
• modeled CO$_2$ vs. geologic observations
• CO$_2$ and climate in deep time
 – Mesozoic warmth
 – Cenozoic cooling
 – onset of Antarctic Glaciation (CO$_2$ threshold?)
• CO$_2$ and sea level
• the “Paleocene Thermal Maximum”
Earth temp. from geochem & fossils

<table>
<thead>
<tr>
<th>Age (Ma)</th>
<th>Colder</th>
<th>Warmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>544</td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

major periods of glaciation
Earth temp. from geochem & fossils

Mesozoic and early Cenozoic warmth, +2 to +6°C at equator & +20 °C or more at poles!

Mega-glaciations

Present Ice Age
Earth temp. from geochem & fossils

progressive Cenozoic cooling to Ice Age temperatures (0 to -6 °C)

Mesozoic and early Cenozoic warmth, +2 to +6°C at equator & +20 °C or more at poles!

mega-glaciations

(temperature estimates are given as departures from present)
Phanerozoic climate change

• what factors might have contributed to long-term changes in Phanerozoic climate?
 – tectonics, paleo-geography
 – solar luminosity (~ +1%/100 my)
 – atmospheric CO₂
 – other (galactic cosmic ray fluxes?)

• changes in average latitude of continents and land-sea configuration important but not sufficient

• change in solar luminosity largely unidirectional

• CO₂ influences climate, but 4x changes or more (v. present) would be required
 – need data or highly educated guess
the long-term C-cycle

\[
\text{organic} \quad \text{inorganic}
\]

\[
\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{CH}_2\text{O} + \text{O}_2
\]

\[
\text{CaSiO}_3 + \text{CO}_2 \leftrightarrow \text{CaCO}_3 + \text{SiO}_2
\]

Berner '03
the organic carbon cycle

photosynthesis

atm. CO$_2$
700 GTC

respiration

plants
600 GTC

decay

sedimentation and sediments
1,600 GTC

~0.1 burial

sedimentary rocks
10,000,000 GTC

weathering
~0.1 GTC/yr

~0.1 recall leak in organic C-cycle to seds (balanced by Wx)
mechanistic model of C-cycle...

what changes to flows might influence CO₂ in surface reservoir?
mechanistic model of C-cycle...

\[\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{CH}_2\text{O} + \text{O}_2 \]

\[\text{CaSiO}_3 + \text{CO}_2 \leftrightarrow \text{CaCO}_3 + \text{SiO}_2 \]

- **tectonics**
 - continental relief/position
 - sea-floor spreading/subduction/volg.

- **climate**
 - \(T, P \)

- **plants**
 - abundance, type

Factors influencing key flows (\(Wx, \) burial, subduction, volc.)
GEOCARB model

• Yale’s Bob Berner considered the evolution (based on independent geologic observations) of these various factors over time in a mechanistic model of the long-term C-cycle

• this enabled Berner to estimate changes in CO$_2$ across the Phanerozoic (last 540 MY)

• what did he find?
GEOCARB model

\[\text{RCO}_2 = \frac{\text{model CO}_2}{"\text{present}" \ (300 \text{ ppm})} \]

Paleozoic
Mesozoic
Cen.

Time (my)

RCO_2 = \text{model CO}_2/"\text{present}" \ (300 \text{ ppm})
the decline in modeled CO\textsubscript{2} accelerated \(~350\) MY ago and some driving factors might be.....

a) appearance/expansion of vascular (woody) plants, b) formation and burial of organic C in poorly oxygenated swamps, c) increased silicate weathering, d) increased volcanism, e) all but d)
answer

• woody plants appeared, expanded 350 - 300 MY ago
 – plants promote silicate weathering (via root respiration)
 – woody plant tissue resistant to oxidation, more likely to survive ‘til burial

• continental position, low relief and warm, humid climate led to development of large inland swamps
 – swamps allow growth and then preservation (due to low oxygen levels) of organic matter

• increased formation, preservation and burial of plant remains led to formation of massive “Carboniferous” coal beds (300-250 MY)
CO$_2$ estimates

estimates from various proxies (colored lines)

all estimates (grey) and their 10 MY average (black)

substantial data - model agreement suggests reconstructions reliable despite uncertainties in both

Royer et al., ‘04
Phanerozoic climate & CO$_2$

18O geo-thermometer corrected for geo-chemical effects

CO$_2$ estimated from various proxies and model (pink)

major glaciations (assoc. w/ low CO$_2$)

after Royer et al., '04
Phanerozoic climate & \(\text{CO}_2 \)

\(^{18} \text{O} \) geo-thermometer corrected for geo-chemical effects

\(\text{CO}_2 \) estimated from various proxies and model (pink)

major glaciations (assoc. w/ low \(\text{CO}_2 \))

after Royer et al., ‘04
Mesozoic

increased sea-floor spreading rates:

= increased subduction of C in seds (yellow) ➞ increased metamorphosis & volcanism (stronger CO₂ source)

= decreased land area (more ocean crust, black) ➞ decreased silicate weathering (weaker CO₂ sink)
Cenozoic

decreased sea-floor spreading rates (early Cenozoic):
= decreased metamorphosis & volcanism of C (weaker CO₂ source)

increased mountain uplift (late Cenozoic):
= increased silicate weathering (stronger CO₂ sink)
summary points (so far)

• *major changes of Phanerozoic climate and CO$_2$ appear related*

• *magnitude of CO$_2$ changes (>>4X “modern”) consistent with role as major climate forcing agent*

• “*observed*” CO$_2$ from proxies well explained by mechanistic / process model of the long-term C-cycle
Cenozoic T

from relative abundance of a heavy isotope of oxygen (18O) in benthic (ocean bottom) carbonate shells

Zachos et al. '01
Colder more

18O reduction of CO₂ to ~2.5X modern permits expansion of glaciers in Antarctica ("system threshold")

CO₂ estimated from carbon isotope measurements in phytoplankton

inception of continental-scale glaciation in Antarctica

Pagani et al.
Cenozoic T

ice house

hot house

more 18O

colder

Zachos et al. ‘01
Cenozoic sea level & CO$_2$

- >35 million yrs ago: no permanent ice
- ~32 million yrs ago: onset of ANT glaciation
- Recent pre-industrial period
- Last glaciation: 21 kyr ago
Paleocene Thermal Maximum

• an abrupt perturbation of the C-cycle and T
• ~ 5000 GTC released in a few 1000 years*
• deep ocean warmed by 5 °C
• lead to severe ocean acidification (marine carbonate dissolved)
• and, extinction of benthic organisms
• recovery of T and ocean chemistry takes $\sim 100,000$ years

*based on 13C proxy (13C discriminated against during photosynthesis and methanogenesis, so organic matter is low in 13C- low values in carbonates indicate addition of organic C as CO_2 to ocean & atmosphere
Paleocene Thermal Maximum

$\delta^{18}O$ (‰)

Paleocene

more ^{18}O
colder

$\delta^{13}C$ (‰)

5 °C warming of deep sea

~ 5000 GTC released

$\delta^{18}O$, $\delta^{13}C$, T, CO_2

Zachos et al. '01
Paleocene Thermal Maximum

is the implied rate of C release consistent with a source in the hard rock reservoir?
methane hydrate

methane held in water ice by high pressure and low temperature beneath sea floor

possible source of low 13C carbon during LPTM
recall

• current inventory of fossil fuels is ~5000 GTC
• at current rates of consumption it would take ~500 years to burn it all
• the LPTM is a strong indication from the geologic record that it would be a mistake to do so
• consequences (?):
summary

• flows of inorganic and organic C into and out of the “rock reservoir” control atmospheric CO$_2$ on long time scales
• these flows are influenced by tectonic forces, climate, and biology
• changes in these factors can be used to estimate CO$_2$ variations in deep time
• such estimates are largely consistent w/ geologic “proxy” evidence of past CO$_2$ amount
• variations of CO$_2$, climate, glaciation and sea level during the Phanerozoic appear to be causally related
• at the end of the Paleocene a marked perturbation of CO$_2$ and climate occurred that appears to be unique in the Cenozoic
learning goals

• be able to describe the primary flow paths of C in the long-term (“rock”) C-cycle and some of the factors that influence the strength of these flows
• use your understanding of the above to explain or “predict” the evolution of CO$_2$ through the Phanerozoic (last 540 MY)
• describe the relationship between Cenozoic cooling, CO$_2$ change and continental scale glaciation in the N and S Hemispheres
• outline the events of the PTM and consider how they might inform our understanding of the timescales of recovery from a large release of C
• establish your own summary view of the overall relationship between CO$_2$, climate and sea level in deep time