XIII. natural variation of CO₂ and climate

clicker question

Which has the *longest* time scale for carbon exchange with the atmosphere?

- A. above ground terrestrial biosphere (tree trunks, leaves)
- B. below ground terrestrial biosphere (soil/plant litter)
- C. upper ocean
- D. deep ocean
- E. carbon in rocks

clicker question

The ocean's biological pump

- a) describes the photosynthetic uptake and downward settling of carbon in the ocean
- b) describes the removal carbon from the sunlit surface by respiration
- c) quickly returns carbon from the deep ocean to the ocean surface and atmosphere
- d) all of the above
- e) none of the above

clicker question

Organic carbon stored as fossil fuels can be oxidized to produce CO₂ and

- a) this happens naturally as a consequence of weathering
- b) this happens during combustion of fossil fuels by humans
- c) a) and b) are both true but a) happens faster
- d) a) and b) are both true but b) happens faster
- e) neither a) or b) are true

review

- carbon cycle includes the atmosphere, ocean, terrestrial biosphere and rock reservoirs
- each of the reservoirs influences the atmosphere on different time scales, depending on size of exchange and size of reservoir
- the terrestrial biosphere is responsible for seasonal variations in CO₂
- other reservoirs must be responsible for longer time scale changes in CO₂
- human activity and burning of fossil fuels connects the very long time scale of the "rock cycle" with the much shorter time scales of the atmosphere, ocean and biosphere

review

- emissions of CO₂ due to burning of fossil fuels have totaled ~250 GTC (by 1994) for since the 1800's
- a bit more than half has remained in the atmosphere
- about half has been taken up by the oceans (this is good!)
- closing the C budget suggests that the terrestrial biosphere has been a net source of C to the atmosphere
- the uptake of fossil fuel derived CO₂ into the oceans has led to ocean acidification (the dissolution of CO₂ into water produces carbonic acid) which impacts carbonate-shelled organisms (bad!)

outline

- overview of Phanerozoic climate (last ~540 My)
- a mechanistic model of the long-term C-cyle -controls on C flows into and out of surface reservoirs
- modeled CO₂ vs. geologic observations
- CO₂ and climate in deep time
 - Mesozoic warmth
 - Cenozoic cooling
 - onset of Antarctic Glaciation (CO₂ threshold?)
- CO₂ and sea level
- the "Paleocene Thermal Maximum"

Earth temp. from geochem & fossils

Earth temp. from geochem & fossils

Mesozoic and early Cenozoic warmth, +2 to +6°C at equator & +20 °C or more at poles!

mega-glaciations

Earth temp. from geochem & fossils

progressive Cenozoic cooling to Ice Age temperatures (0 to -6 °C)

Mesozoic and early Cenozoic warmth, +2 to +6°C at equator & +20 °C or more at poles!

mega-glaciations

(temperature estimates are given as departures from present)

Phanerozoic climate change

- what factors might have contributed to long-term changes in Phanerozoic climate?
 - tectonics, paleo-geography
 - solar luminosity ($\sim +1\%/100$ my)
 - atmospheric CO₂
 - other (galactic cosmic ray fluxes?)
- changes in average latitude of continents and land-sea configuration important but not sufficient
- change in solar luminosity largely unidirectional
- CO₂ influences climate, but 4x changes or more (v. present) would be required
 – need data or highly educated guess

the long-term C-cycle

Berner '03

mechanistic model of C-cycle...

what changes to flows might influence CO₂ in surface reservoir?

mechanistic model of C-cycle...

GEOCARB model

- Yale's Bob Berner considered the evolution (based on independent geologic observations) of these various factors over time in a mechanistic model of the long-term C-cycle
- this enabled Berner to estimate changes in CO₂ across the Phanerozoic (last 540 MY)
- what did he find?

 $RCO_2 = model CO_2/"present" (300 ppm)$

Time (my)

the decline in modeled CO₂ accelerated ~350 MY ago and some driving factors might be.....

a) appearance/expansion of vascular (woody) plants,
b) formation and burial of organic C in poorly
oxygenated swamps, c) increased silicate weathering,
d) increased volcanism, e) all but d)

answer

- woody plants appeared, expanded 350 300 MY ago
 - plants promote silicate weathering (via root respiration)
 - woody plant tissue resistant to oxidation, more likely to survive 'til burial
- continental position, low relief and warm, humid climate led to development of large inland swamps
 - swamps allow growth and then preservation (due to low oxygen levels) of organic matter
- increased formation, preservation and burial of plant remains led to formation of massive "<u>Carbon</u>iferous" coal beds (300-250 MY)

CO₂ estimates

estimates from various proxies (colored lines)

all estimates (grey) and their 10 MY average (black)

substantial data - model agreement suggests reconstructions reliable despite uncertainties in both

Royer et al., '04

Phanerozoic climate & CO₂

after Royer et al., '04

Phanerozoic climate & CO₂

¹⁸O geo-thermometer corrected for geochemical effects

CO₂ estimated from various proxies and model (pink)

major glaciations (assoc. w/ low CO₂)

after Royer et al., '04

increased sea-floor spreading rates:

= increased subduction of C in seds (yellow) → increased metamorphosis & volcanism (stronger CO₂ source)

= decreased land area (more ocean crust, black) → <u>decreased</u> <u>silicate</u> <u>weathering</u> (weaker CO₂ sink)

Cenozoic

decreased sea-floor spreading rates (early Cenozoic):

= <u>decreased metamorphosis</u> & <u>volcanism</u> of C (<u>weaker CO₂</u> <u>source</u>)

increased mountain uplift (late Cenozoic):

= <u>increased silicate</u> <u>weathering</u> (stronger CO₂ sink)

summary points (so far)

- major changes of Phanerozoic climate and CO₂ appear related
- magnitude of CO₂ changes (>>4X "modern") consistent with role as major climate forcing agent
- "observed" CO₂ from proxies well explained by mechanistic / process model of the longterm C-cycle

Cenozoic T

from relative abundance of a heavy isotope of oxygen (¹⁸O) in benthic (ocean bottom) carbonate shells

Zachos et al. '01

ice house

hot house

Zachos et al. '01

Cenozoic sea level & CO₂

Paleocene Thermal Maximum

- an abrupt perturbation of the C-cycle and T
- ~ 5000 GTC released in a few 1000 years*
- deep ocean warmed by 5 °C
- lead to severe ocean acidification (marine carbonate dissolved)
- and, extinction of benthic organisms
- recovery of T and ocean chemistry takes ~100,000 years

*based on ¹³C proxy (¹³C discriminated against during photosynthesis and methanogenesis, so organic matter is low in ¹³C- low values in carbonates indicate addition of organic C as CO_2 to ocean & atmosphere

Paleocene Thermal Maximum

Zachos et al. '01

Paleocene Thermal Maximum

is the implied rate of C release consistent with a source in the hard rock reservoir?

methane hydrate

possible source of low ¹³C carbon during LPTM

methane held in water ice by high pressure and low temperature beneath sea floor

recall

- current inventory of fossil fuels is ~5000 GTC
- at current rates of consumption it would take ~500 years to burn it all
- the LPTM is a strong indication from the geologic record that it would be a mistake to do so
- consequences (?):

summary

- flows of inorganic and organic C into and out of the "rock reservoir" control atmospheric CO₂ on long time scales
- these flows are influenced by tectonic forces, climate, and biology
- changes in these factors can be used to estimate CO₂ variations in deep time
- such estimates are largely consistent w/ geologic "proxy" evidence of past CO₂ amount
- variations of CO₂, climate, glaciation and sea level during the Phanerozoic appear to be causally related
- at the end of the Paleocene a marked perturbation of CO₂ and climate occurred that appears to be unique in the Cenozoic

learning goals

- be able to describe the primary flow paths of C in the long-term ("rock") C-cycle and some of the factors that influence the strength of these flows
- use your understanding of the above to explain or "predict" the evolution of CO₂ through the Phanerozoic (last 540 MY)
- describe the relationship between Cenozoic cooling, CO₂ change and continental scale glaciation in the N and S Hemispheres
- outline the events of the PTM and consider how they might inform our understanding of the timescales of recovery from a large release of C
- establish your own summary view of the overall relationship between CO₂, climate and sea level in deep time