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Allogenic and Autogenic Signals 
in the Stratigraphic Record of the 
Deep-Sea Bengal Fan
Mike Blum1, Kimberly Rogers2, James Gleason3, Yani Najman4, Jarrett Cruz5 & Lyndsey Fox6

The Himalayan-sourced Ganges-Brahmaputra river system and the deep-sea Bengal Fan represent 
Earth’s largest sediment-dispersal system. Here we present detrital zircon U-Pb provenance data 
from Miocene to middle Pleistocene Bengal Fan turbidites, and evaluate the influence of allogenic 
forcing vs. autogenic processes on signal propagation from the Himalaya to the deep sea. Our data 
record the strong tectonic and climatic forcing characteristic of the Himalayan system: after up to 
2500 km of river transport, and >1400 km of transport by turbidity currents, the U-Pb record faithfully 
represents Himalayan sources. Moreover, specific U-Pb populations record Miocene integration of the 
Brahmaputra drainage with the Asian plate, as well as the rapid Plio-Pleistocene incision through, and 
exhumation of, the eastern Himalayan syntaxis. The record is, however, biased towards glacial periods 
when rivers were extended across the shelf in response to climate-forced sea-level fall, and discharged 
directly to slope canyons. Finally, only part of the record represents a Ganges or Brahmaputra 
provenance end-member, and most samples represent mixing from the two systems. Mixing or the lack 
thereof likely represents the fingerprint of autogenic delta-plain avulsions, which result in the two rivers 
delivering sediment separately to a shelf-margin canyon or merging together as they do today.

Source-to-sink (S2S) concepts have focused attention on coupling between sediment production in oro-
genic source terrains, routing and storage of sediments through fluvial systems, and accumulation in deltaic to 
basin-floor sinks1. Much of the S2S approach is grounded on insights from modern systems, where rates, pro-
cesses, and characteristics of source terrains can be quantified. Inverting concepts from the modern world to inter-
pret Earth history from the stratigraphic record in the depositional sink raises a number of important questions. 
For example, the primary allogenic drivers for erosion and sediment transfer to the land-sea boundary include 
tectonic and geodynamic processes that build topography, climatically- and tectonically-driven erosion, climate 
change, and climate-forced sea-level change. But how faithfully are allogenic signals such as these transferred to 
sinks in the deep sea, and how do we disentangle allogenic forcing from signals of autogenic surface dynamics?

In February and March 2015, International Ocean Discovery Program Expedition 354 (hereafter IODP 
354) drilled a 7-site transect in the Bay of Bengal to collect core from the deep-sea Bengal Fan (Fig. 1), the 
terminal sink for the Himalayan-sourced Ganges and Brahmaputra Rivers. A key objective was to expand the 
record of source-to-sink sediment transport from the Himalaya to the deep sea2. Here we present a new body of 
detrital-zircon U-Pb (hereafter DZ U-Pb) data from sandy and silty turbidites of the Bengal Fan, and use these 
data to evaluate the record of signal transfer in the Miocene to middle Pleistocene stratigraphic record.

Background
The Himalayan-sourced Ganges-Brahmaputra River system (GB) and the deep-sea Bengal Fan represents Earth’s 
largest modern-day source-to-sink sediment-dispersal system. Himalayan orogenesis is driven by intercontin-
etal collision between the Indian and Asian plates, which began as early as ca. 59 Ma. and is still ongoing3–7. 
Headwaters of the Brahmaputra lie within the Lhasa terrane (hereafter Lhasa) on the Tibetan Plateau of the 
Asian plate, to the north of the Indus-Tsangpo Suture (ITS). Lhasa includes Cambrian-age granites, and Paleozoic 
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and Mesozoic clastics intruded by Jurassic through Paleogene granitoids of the pre-collision Gangdese arc8,9. 
Headwaters of the Ganges, and many tributaries to the Brahmaputra, are restricted to the Himalaya and the 
Indian plate, which extends from the ITS in Tibet to the Main Frontal Thrust in the south. There is much con-
fusion between geologic and geographic terminology, but Himalayan rocks represent four tectonostratigraphic 
sequences that extend from west to east, and which are generally separated by north-dipping crustal-scale faults10. 
From north to south, as used here these are: (1) the Tethyan Himalaya Sequence (THS), comprised primarily 
of Paleozoic and Mesozoic sedimentary rocks, with leucogranites of Neogene age11; (2) the Greater Himalaya 
Sequence (GHS) is separated from the THS by the South Tibetan detachment, a normal fault, and is comprised 
of Late Neoproterozoic to Ordovician high-grade metamorphic and plutonic rocks, also with leucogranites of 
Neogene age; (3) the Lesser Himalaya Sequence (LHS) is separated from the GHS by the Main Central Thrust, 
and is comprised of Paleoproterozoic and older metasedimentary and igneous rocks; and (4) the Sub-Himalaya is 
separated from the LHS by the Main Boundary Thrust, and is comprised of mostly Neogene foreland-basin sedi-
ments (Fig. 2). The THS, GHS, and LHS dominate the geographically-defined Tethyan, Greater (or Higher), and 
Lesser (or Lower) Himalaya, respectively, but the geographic Greater Himalaya includes THS rocks as structural 
outliers, and the geographic Lesser Himalaya includes THS and GHS structural outliers.

The modern-day Ganges-Brahmaputra system (hereafter the GB) has a contributing drainage area of >2*106 km2,  
which includes much of the high-relief Himalaya and the southern Tibetan Plateau. The Ganges and Brahmaputra 
emerge from the Sub-Himalaya, route sediment through the foreland basin while gathering tributary inputs from 
the Himalaya to the north, Peninsular India to the south, and the Indo-Burman Ranges to the East, and then 
discharge to the delta plain and Bengal basin in the northern Bay of Bengal. Each river has a monsoon-driven 
discharge regime with 1–3 m of precipitation per year12, and the GB system delivers >1 Gt of sediment to the delta 
plain in India and Bangladesh13,14: an estimated 30% of the total modern load comes from the Ganges, whereas 

Figure 1. The Ganges-Brahmaputra sediment-dispersal system from Google Earth imagery (Map data: SIO, 
NOAA, U.S. Navy, NGA, GEBCO; Image; Landsat/Copernicus). Solid white line outlines the combined Ganges-
Brahmaputra contributing drainage area. Light blue colors along the delta front roughly correspond to the 
mud transport system that has produced a muddy subaqueous clinothem18. SoNG indicates the “Swatch of No 
Ground” modern shelf-penetrating canyon. Thin white dashed lines are post-Paleocene Bengal Fan thickness 
contours (in kilometers)17,29. The location of IODP Expedition 354 drill sites are shown within the Bay of 
Bengal, with specific core numbers shown in lower left inset (formal core numbers identified by U1454, U1455, 
etc.). SP = Shillong Plateau and IBR = Indo-Burman Range, with the location of IODP Expedition 362 drill sites 
on the Nicobar Fan as shown28.
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up to 70% is derived from the Brahmaputra. Rates of erosion generally follow precipitation trends, and are low 
in the dry Tethyan Himalaya, then increase to the south and east with increases in monsoon precipitation, as GB 
tributaries cut through the Greater and Lesser Himalaya15,16. The GB system therefore includes strong tectonic 
and climatic forcing, which drives high rates of sediment production and transfer to the foreland basin, the delta 
plain and the land-sea boundary.

The Holocene GB delta overlies a post-Paleocene Bengal basin depocenter that is up to 20 km in thickness17. 
The Holocene delta resides on the inner shelf, and includes an aggradational and progradational subaerial top-
set and foreset, and an active mid-shelf subaqueous clinoform18. Large GB sediment loads drive aggradation of 
the subaerial delta-plain, and high aggradation rates promote frequent avulsions19,20. For example, the Ganges 
and Brahmaputra merge in Bangladesh today, but the Ganges discharged to the Bay of Bengal >250 km west of 
the present-day river mouths as late as the 1600s21: a distributary channel still connects to this course, and may 
transport a sediment load similar to the Ganges below the bifurcation22. Similarly, the Holocene Brahmaputra has 

Figure 2. (A) Map illustrating major tectonostratigraphic domains and zircon source areas within the 
Himalaya, which are relevant to this study, modified and simplified from7 with data from3,4,10. STD = South-
Tibetan Detachment, MCT = Main Central Thrust, MBT = Main Boundary Thrust, MFT = Main Frontal 
Thrust, Nanga Parbat = western syntaxis, Namche Barwa = eastern syntaxis. The Indus-Yarlong suture 
zone (Indus-Tsangpo or ITS in the text) separates Asia from India. (B) Normalized kernel-density estimates 
(KDEs) for zircon (bedrock and detrital) U-Pb ages from major tectonostratigraphic domains calculated from 
data published in37. Here and in Fig. 3, populations A-G represent informal groups for discussion purposes. 
GHS plutons are schematic, and plot does not include Mesozoic and Cenozoic ages from Lhasa or the eastern 
syntaxis. (C) Normalized KDEs for the modern Ganges and Brahmaputra Rivers, compared with a composite 
plot for all Bengal Fan samples. Distinctive peaks as shown for the modern Ganges and Brahmaputra Rivers.
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avulsed at least 3 times23. Avulsions of this kind typically represent inherent, autogenic behavior in aggradational 
fluvial-deltaic systems24 and have produced the ~400 km wide swath of Holocene GB alluvial-deltaic sediments. 
The delta is connected to the modern Bengal Fan system via the shelf-penetrating “Swatch-of-no-Ground” can-
yon (SoNG), which is inherited from the last glacial period when rivers were extended across the shelf due to 
climate-forced sea-level fall17.

The Bengal Fan extends ~2500–3000 km south into the Bay of Bengal and Indian Ocean, and is Earth’s largest 
deep-sea fan. Post-collision Himalayan sediment first appears in the Bengal Basin by 38 Ma25, but the Bengal Fan 
emerged as a distinct entity in the deep Bay of Bengal by the Late Oligocene to Early Miocene26, roughly coinci-
dent with an increase in Himalayan exhumation27. The Nicobar Fan, located in the eastern Bay of Bengal adjacent 
to the Sunda accretionary prism (Fig. 1), is a lobe within the greater Bengal Fan system and has over time received 
significant sediment from the GB as well28. Thickness of post-Paleocene Bengal Fan sediment tapers from ~12 km 
near the toe of the continental slope to <1 km over a distance of ~2500 km17,29. IODP 354 drill sites at 8°N latitude 
are located ~1400 km to the south of the modern shelf margin: significant silt- and sand-rich fan deposition at this 
latitude commenced ca. 18 Ma, with Miocene to present thicknesses of >1100 m [see Fig. SR3]. At ~3°N, where 
IODP Expedition 362 collected cores through the Nicobar Fan, Miocene to present sediments exceed 1200 m in 
thickness28.

Basic patterns of erosion and source-to-sink sediment transfer have been in place through the Neogene and 
Quaternary30, but details of sediment routing have changed through time. The most significant changes are: (1) 
continued north-northeast motion of the Indian plate relative to Eurasia31 such that the location of IODP 354 
drill sites would have been ~950 km and ~400 farther south with respect to the GB delta at ca. 20 and 10 Ma, 

Figure 3. Stacked normalized KDE plots for Bengal Fan DZ samples, illustrating U-Pb age populations in each 
sample. Additional data, including KDE plots of specific age populations present in the modern Ganges and 
Brahmaputra Rivers, and the Bengal Fan as a whole, are included in Figures S4–S7, whereas multi-dimensional 
scaling plots are provided in Figure S8.
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respectively; (2) paleogeographic changes in the GB drainage area, in particular the Miocene capture of Tibetan 
drainage by the Brahmaputra and its tributaries32,33; (3) the Late Miocene-Pliocene incision of the Brahmaputra 
through the Tsangpo Gorge in the rapidly uplifting eastern Himalayan syntaxis34; and (4) westward migration of 
the Brahmaputra river and delta due to westward propagation of the IBR and uplift of the Shillong Plateau since 
5 Ma35, which reduced the east-west dimensions of the Bengal basin by >200 km. Last, the SoNG is the only major 
shelf-penetrating canyon today, however, older shelf-penetrating canyons are likely common in the subsurface 
where they have been buried by younger shelf-margin aggradation and progradation.

Results
Our data consists of U-Pb and Pb-Pb zircon crystallization ages obtained by laser-ablation ICP-MS analyses 
of detrital-zircon grain interiors: we have 535 concordant ages from samples collected from the modern Ganges 
and Brahmaputra Rivers, and 6602 concordant ages from twenty-five samples from IODP 354 cores through 
the middle Bengal Fan (Table 1). Modern river samples were collected from sand bars located on the modern 
Ganges and Brahmaputra ~80–120 km upstream from their present confluence. Bengal Fan samples cover the 
period of turbidite fan deposition at the location of IODP Expedition 354 and are early Miocene (Burdigalian) to 
middle Pleistocene in age (ca. 18 to 0.2 Ma) based on shipboard2 and post-shipboard biostratigraphic constraints 
(Table S1 and S2). Silt-rich turbidites were sampled for the ca. 18–10 Ma record, but post-10 Ma samples were 
fine-grained sand. Our interpretations are guided by previously published bedrock- and detrital-zircon U-Pb age 
populations from Tibetan and Himalayan tectonostratigraphic sequences (Fig. 2B) [e.g.36–40], DZ U-Pb signatures 
of time-equivalent Neogene foreland-basin sediments of the Sub-Himalaya [e.g.41,42] and ancestral Brahmaputra 
sediments to the south of Shillong Plateau32, and DZ U-Pb data from the modern Ganges, modern Brahmaputra 
or their tributaries within or proximal to the Himalaya41,42.

Our new modern river samples represent the integrated DZ U-Pb population for each river system as it 
enters the Bengal Basin, and define major populations and individual peaks that are diagnostic of the Ganges 
vs. Brahmaputra drainages as a whole. Figure 2C plots DZ U-Pb populations for the modern Ganges and 
Brahmaputra Rivers as normalized kernel-density estimates (KDEs), relative to the entire Bengal Fan dataset, 
which show that modern rivers contain all major Archean to Paleozoic zircon U-Pb populations that characterize 
the Himalaya. The modern Brahmaputra sample also contains a significant <300 Ma population (22% of the total) 

Sample # Drill Site Hole Core Depth (Mbsf)
Numerical Age 
Estimate (Ma) Stratigraphic Age n

1 U1451 A 4H–6H 25–35 0.3 Middle Pleistocene 273
2 U1450 A 6F–8F 30–44 0.4 Middle Pleistocene 263
3 U1452 B 8F 49–51 0.5 Middle Pleistocene 273
4 U1453 A 11F 370–385 0.5 Middle Pleistocene 268
6 U1453 A 26F 467 0.6 Middle Pleistocene 276
5 U1451 A 13F 70–75 0.6 Middle Pleistocene 259
7 U1452 B 38F 190–192 1.3 Early Pleistocene 260
8 U1453 A 32F 24–40 1.3 Early Pleistocene 291
9 U1449 A 29F–31F 74 1.5 Early Pleistocene 278
10 U1450 A 70F 332–338 2.9 Late Pliocene 259
11 U1450 A 78F–80F 360–370 3.2 Late Pliocene 259
12 U1450 A 98F 465–470 3.5 Late Pliocene 273
13 U1450 A 124F 600–605 3.6 Early Pliocene 271
16 U1451 A 37F 225–230 6.3 Late Miocene 267
17 U1451 A 41F 245–250 6.5 Late Miocene 262
14 U1451 A 49F 280–285 7.2 Late Miocene 282
18 U1451 A 60F 335–340 7.5 Late Miocene 264
19 U1451 A 66F 365–370 8.4 Late Miocene 271
20 U1451 A 80F 430–435 8.7 Late Miocene 264
15 U1451 A 102F 535–540 9.8 Late Miocene 269
21 U1451 B 3X 550–555 10.2 Late Miocene 255
22 U1451 B 22R 715–725 11.5 Late Miocene 281
23 U1451 B 41R 900–905 14.0 Middle Miocene 273
24 U1451 B 53–54R 1015–1020 16 Early Miocene 201
25 U1451 B 62R 1085–1090 18 Early Miocene 210
26 M01 modern Ganges River 0 modern 261
27 J03 modern Brahmaputra River 0 modern 274

Table 1. Summary of detrital zircon samples from IODP Expedition 354. Depth reported in meters below sea 
floor (Mbsf), whereas numerical age estimates are based on best-fit interpolations between shipboard and post-
cruise biostratigraphic constraints (Tables S1 and S2), and “n” = number of concordant U-Pb or Pb-Pb analyses 
in that sample. Additional data on sample context is provided in the Supplemental File, Figures S1–S4.
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that is predominantly derived from the Jurassic through Paleogene Gangdese arc in Tibet (Fig. S4), and possi-
bly the GHS within the eastern Himalaya syntaxis (Neogene population only)36,38,43–45. All populations from the 
Himalaya are represented to some degree (Fig. 2B,C), but there are significant differences in the representation of 
the different tectonostratigraphic sequences, and the erosional terrains they represent. The most notable of these 
is the paucity of the ca. 400–600 Ma population that characterizes the THS37 (Fig. S5): in modern river samples 
this age population is dominated by late Cambrian and Ordovician ages typical of intrusive rocks of the GHS39,41 
or perhaps Lhasa8,37. Moreover, there are differences in peaks between the two river samples: the modern Ganges 
contains a single prominent peak at ca. 470 Ma, whereas the modern Brahmaputra contains distinct peaks at 
ca. 480 and 500 Ma. Within the ca. 900–1250 Ma population, the modern Ganges contains a strong peak at ca. 
975 Ma, common to the GHS, whereas the Brahmaputra is dominated by ages of ca. 1100–1230 Ma that are likely 
more typical of Lhasa34 (Fig. S7). Last, the modern Ganges contains a significant Paleoproterozoic and Archean 
component, including peaks at ca. 1850 and 2475 Ma, which reflect derivation from Paleoproterozoic strata of the 
LHS and Peninsular India39,40.

Figure 3 Summarizes normalized KDE plots of DZ U-Pb age populations for all Bengal Fan samples. Like 
modern river samples, each fan sample displays Archean to Paleozoic zircon U-Pb populations that characterize 
the Himalaya. The largest populations overall are ca. 400–600 Ma and 900–1250 Ma in age, which comprise ~17 
and ~27 percent of the total, respectively. Similar to modern river samples, the ca. 400–600 Ma population of 
the Bengal Fan is dominated by late Cambrian and Ordovician ages typical of the GHS and Lhasa, each of the 
key peaks from modern river samples are well-represented, and the THS signal is relatively minor. Most Bengal 
Fan samples also include Mesozoic and Cenozoic populations (<300 Ma) from Lhasa, which comprises ~21% of 
the entire dataset, with broad peaks at ca. 50–60 and 110–130 Ma36 (Fig. S4). Some ~20% of the <300 Ma pop-
ulation, or ~4% of the total, is ca. 14–36 Ma in age, which is consistent with derivation from Lhasa or Tertiary 
leucogranites of the THS and GHS11,36. A small number of grains (<0.5% of the total) from this <40 Ma pop-
ulation are <10 Ma in age, which likely come from the rapidly exhuming Namche Barwa massif of the eastern 
syntaxis34,38,44–49.

Bengal Fan samples display changes through time in the proportional representation of different popula-
tions, which are shown in Fig. 4 relative to modern river values. Most prominent is the two-fold increase in 
the <300 Ma population during the late Pliocene to early Pleistocene: this population comprises only 4–15% of 
the total in Miocene through middle Pliocene samples, but ranges from 15–45% in samples of Late Pliocene and 
Pleistocene age. The ca. 400–600 Ma population also increases through time: Miocene samples have lower pro-
portions of this population than either modern river, whereas Late Pliocene and Pleistocene samples have values 
that are similar to, or greater than, either modern river. Increases in the <300 and ca. 400–600 Ma populations 
through time are balanced by decreases in the ca. 700–900 Ma and 900–1250 Ma populations, which could be 
derived from the GHS, the THS or Lhasa, and the >2300 Ma population, derived from the LHS and possibly 
peninsular India. Miocene and Pliocene Bengal Fan samples have proportions of the ca. 700–900 Ma population 
that are similar to the modern Ganges, whereas Pleistocene samples are generally consistent with or outside the 
range of values found in the modern Ganges and Brahmaputra Rivers. For the ca. 900–1250 Ma population, the 
most significant observation is that four Pleistocene samples fall within the range defined by the modern Ganges 
and Brahmaputra Rivers, whereas seven samples have higher proportions than either modern river sample. In 
aggregate, then, individual DZ U-Pb peaks in modern river samples are well represented in the Bengal Fan, but 
the proportions of key populations in Bengal Fan samples are different: for Pleistocene samples, proportions of 
the <300 Ma, 400–600 Ma, 700–900 Ma, 900–1250 Ma, and >2300 Ma populations mostly lie outside the domain 
of modern river samples.

There are also significant non-directional (between sample) population changes through time, especially after 
the Late Pliocene to Early Pleistocene increase in the <300 Ma population. From KDEs, cumulative probabil-
ity plots, and multi-dimensional scaling analyses (Figs 3 and 5A, DR8), Pliocene sample 13 (ca. 3.6 Ma) and 
early Pleistocene sample 9 (ca. 1.5 Ma) represent end-member populations within the Late Pliocene and younger 
Bengal Fan sample set. Sample 13 has a very small <300 Ma population (<2% of the total), which indicates little 
to no direct contributions from Lhasa, as well as peaks within Proterozoic and Archean populations that are 
common in our modern Ganges River sample, but uncommon in the modern Brahmaputra, and is therefore 
interpreted to represent a paleo-Ganges provenance. By contrast, sample 9 contains the highest proportion of 
the <300 Ma population (~45%), whereas only ~11% is Paleoproterozoic or Archean in age, which is interpreted 
to represent a paleo-Brahmaputra provenance.

As noted above, there are significant differences between proportions in modern river samples vs. even the 
youngest Bengal Fan samples of Middle Pleistocene age, suggesting there are differences between the modern 
sediment-routing system and that which produced Bengal Fan turbidites. We therefore use samples 13 and 9 as 
Bengal Fan end members and have constructed simple mixing models to assess possible changes in contributions 
from the paleo-Ganges and paleo-Brahmaputra through the Late Pliocene and Pleistocene (Fig. 5B). The first 
model simulates a completely mixed daughter population, whereas the second and third models simulate daugh-
ter populations that mix 100% of the paleo-Ganges load with 50% of the paleo-Brahmaputra, and conversely, 50% 
of the paleo-Ganges load with 100% of the paleo-Brahmaputra. Apart from samples 13 and 9, about one-third of 
Plio-Pleistocene Bengal Fan samples resemble a completely mixed GB system, whereas one-third resemble the 
simulation with 100% of the Ganges and 50% or less of the Brahmaputra, and one-third resemble the simulation 
with 100% of the Brahmaputra and 50% of the Ganges.

Discussion
DZ U-Pb data from Bengal Fan turbidites provide a record of Miocene to middle Pleistocene source-to-sink 
signal transfer in Earth’s largest sediment-dispersal system. IODP 354 drill sites were located up to ~3500 kilom-
eters from source areas in the Himalaya, and ~1400 km from the modern shelf margin, within a mid-fan setting. 
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However, due to northward migration of the Indian plate, distances between the shelf margin and IODP 354 
locations were almost 1000 km more during the Early Miocene: what was a very distal fan setting at the begin-
ning of our record evolved to a mid-fan setting by the Plio-Pleistocene. Miocene increases in exhumation cou-
pled with decreases over time in the length scales of sediment transport due to ongoing convergence27,31 likely 
explains increases over time in sand content within IODP 354 cores2. Nevertheless, even with transport distances 
that blend up to 2500 km of river flow with ~1400–2400 km of turbidity currents, the DZ U-Pb record faithfully 
records Himalayan source terrains. This large-scale signal transfer reflects the high relief and high exhumation 
rates of the Himalaya, an active sediment transport system driven by monsoon and snowmelt-generated dis-
charge regimes, and the propensity of large river systems like the GB to homogenize sand transport over long 
distances50. We note the modern Mississippi River DZ U-Pb record also integrates the signals of its drainage 
basin51, and the Mississippi fan in the deep Gulf of Mexico also faithfully records the signature of the Mississippi 
drainage basin52.

The timing and style of Brahmaputra integration with the Asian plate is important to SE Asian drainage evolu-
tion as well as models that argue for or against strong coupling between tectonics and surface processes [e.g.32,46–49].  
Our data includes significant Gangdese arc and, more broadly, <300 Ma populations in Early Miocene (ca. 18 Ma) 
Bengal Fan samples, which shows that Tibetan drainage was at least partially integrated with the Brahmaputra 
by that time:32,33 the <300 Ma populations from Tibet are prominent in Middle Miocene DZ U-Pb data from 
the Nicobar Fan as well28. Equally important, the population from Lhasa doubles in Bengal Fan samples begin-
ning in the late Pliocene, which we speculate may in part reflect increasing integration of the Lhasa terrane 
into the Brahmaputra drainage. Our data also shows an increase in the ca. 400–600 Ma population through the 

Figure 4. Changes in key DZ U-Pb populations through time. (A) The total proportion of mostly Lhasa grains 
that are <300 Ma within each sample, with additional more specific plots of the Gangdese ca. 40–120 Ma 
population and the ca. <40 Ma population that can represent Lhasa or Tertiary luecogranites of the THS and 
GHS. (B–F) Changes through time in key >300 Ma populations, where proportions for each sample represent 
values that have been normalized to represent the >300 population only, which is both abundant and highly 
variable. In all figures, the red-blue gradient represents percent contribution of this population within the 
modern Ganges (red end-member) and modern Brahmaputra Rivers (blue end-member).
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Plio-Pleistocene, which is consistent with increased sediment flux from Lhasa, as well as from the eastern syn-
taxis, which was rapidly exhuming at this time32,49,53–55.

Bengal Fan samples produced no U-Pb ages that approximate depositional ages from biostratigraphic data, 
and therefore U-Pb data do not improve geochronological resolution on fan deposition. However, the presence of 
small numbers of grains with U-Pb ages of ca. 10–4 Ma, which are derived from the anomalously young (<10 Ma) 
and rapidly exhuming metamorphic core of the eastern syntaxis38, provides insights into rates of signal propaga-
tion. Young syntaxial grains with U-Pb ages of 6.2 ± 0.1 and 5.0 ± 0.1 Ma appear in Bengal Fan Late Pliocene sam-
ple 10, deposited ca. 2.9 Ma, and grains with U-Pb ages of 9.8 ± 0.3 Ma to 4.8 ± 0.2 Ma appear in Early Pleistocene 
sample 9, deposited ca. 1.3 Ma. The low abundance of this young population makes it difficult to assess the sig-
nificance of presence or absence in older samples, and fully address alternative models for syntaxis uplift and 
incision. However, the presence of these young grains indicates crystallization, kilometers of exhumation, and 
transport ~3000 km to IODP drill sites in the deep-sea fan within a ~2–3 Myr time frame.

Bengal Fan DZ U-Pb data are likely insufficient to serve as a direct proxy for Neogene and Quaternary climate 
changes and their effects on erosion in the Himalaya, which are best documented by other means. However, 
large-scale sand transport to the middle Bengal Fan is most likely dependent on climate-forced sea-level change, 
and corresponding extension of river mouths to the shelf margin56. With the exception of the Congo Fan, which 
is fed by a canyon that penetrates across the shelf and into the river mouth, large rivers with broad shelves like 
the Amazon and Mississippi are not contributing significant volumes of sand to the deep sea during Holocene 
interglacial conditions of high sea level57,58. Instead, they discharge to inner-shelf shorelines, and the sand frac-
tion is sequestered on the inner shelf. Moreover, river mouths or a sandy shoreline must be within 2–5 km of the 
canyon head to deliver high concentrations of sand, whereas mud can be delivered if the river mouth, shoreline, 
or subaqueous clinoform is within 20–50 km59. The GB system is in this category as well: Holocene mud transport 
through the SoNG is well documented [e.g.60,61], but there has been little if any concentrated sand delivery to the 
basin floor during this same period. Moreover, the latest Pleistocene to Holocene channel-levee of the Bengal Fan, 
from IODP 354 Site 1454, lacks distinct sandy turbidite beds2. We therefore suggest the sand-rich part of the Late 
Pliocene to Pleistocene Bengal Fan record is biased towards glacial-periods with low sea level, when rivers were 
extended across emergent shelves and discharged directly to shelf-margin canyon heads. Hence, whereas strong 
tectonic and climatic forcing associated with the Himalaya and the GB system drives sediment transfer to the 
continental margin and the land-sea boundary, large-scale transfer of sand to the deep sea also reflects responses 
of the Ganges and Brahmaputra Rivers to climate-forced sea-level fall.

Other aspects of the Bengal Fan DZ U-Pb record may reflect climatic controls and climate change. For exam-
ple, the limited THS signal throughout the Bengal Fan DZ U-Pb record is consistent with views that erosion in 
that part of the orogen is at least partly precipitation limited15,16, and the majority of sediment over time is derived 
from Lhasa and the GHS30. In this context, differences in the proportions of key DZ U-Pb populations between 
modern river samples and the Bengal Fan may be informative. Pleistocene Bengal Fan DZ U-Pb data include (a) 
higher proportions of the <300 Ma population, which reflects source areas in Lhasa, (b) higher proportions of 
the ca. 400–600 Ma population, which can be derived from Lhasa and the GHS, but (c) lower proportions from 
the LHS and/or peninsular India. We consider Pleistocene Bengal Fan samples to be biased to record turbidite 

Figure 5. (A) Cumulative probability plots for Bengal Fan DZ samples of Plio-Pleistocene age, highlighting the 
end-member paleo-Ganges (sample 13) and paleo-Brahmaputra (sample 9) provenance signals. (B) A simple 
mixing model that illustrates the Ganges and Brahmaputra provenance end-members compared with mixes 
of the two signals in various proportions. Mixes are normalized to the modern-day load differential between 
the two rivers, such that a population that reflects 100% of the Ganges mixed with 100% of the Brahmaputra is 
comprised of 30% Ganges and 70% Brahmaputra.
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deposition during glacial periods with low sea level. We therefore suggest the differences between modern river 
samples and the Pleistocene Bengal Fan may reflect differences in the loci of sediment production in the modern 
interglacial climate with strong monsoon rains, vs. a glacial climate where monsoon strength may be reduced and 
erosion is more strongly tied to higher-elevation cold-climate and glacial processes.

Last, we argue that the Plio-Pleistocene Ganges and Brahmaputra delivered sand to IODP 354 sites sepa-
rately to produce parent samples 13 and 9, but were merged or partially merged when they delivered the mixed 
populations that comprise most Bengal Fan samples. DZ U-Pb data from the Nicobar Fan show periods of more 
Ganges-like vs. mixed vs. more Brahmaputra-like populations as well28. We recognize there are multiple mech-
anisms by which populations can be mixed during transport, for example, climate change impacts on sediment 
composition, tidal and longshore processes, and recycling of older deposits. However, in view of the perva-
sive nature of mixing, we argue that autogenic delta-plain avulsions represent the most straightforward way to 
explain the mixing of DZ U-Pb populations or the lack thereof. Avulsions are commonly initiated within a river’s 
hydraulic backwater reach, which extends hundreds of kilometers upstream from the river mouth in large, deep, 
low-gradient rivers like the Ganges and Brahmaputra. Hence, even a modest avulsion angle of 15–25° can result in 
100s of km of lateral displacement in river-mouth sediment inputs to the active land-sea boundary56,62. Moreover, 
avulsion is an inherent, high-frequency (millennial-scale) process24 that can distribute sediment inputs across a 
broad delta plain like the GB over a short period of time. During periods of high sea level like the Holocene, GB 
avulsions take place on an inner-shelf delta, and sandy sediments are sequestered on the inner shelf (Fig. 6A). 
With sea-level fall, rivers incise through the highstand deltaic clinothem and extend to the shelf margin, with 
backwater reaches that shift basinward as well. Avulsion on the shelf-margin delta then plays a fundamental role 
in the location of sediment discharge to a canyon system and the fan. We therefore infer that most of our DZ U-Pb 
samples represent times of low sea level when the Ganges and Brahmaputra sometimes discharged separately to 

Figure 6. Multi-scenario model for Late Pliocene through Pleistocene sediment dispersal, showing the modern 
context with sea-level highstand and an inner-shelf delta vs. time periods when climate-forced sea-level fall 
results in coastal-plain and cross-shelf incised valleys linked to shelf-margin shoreline positions. Different 
routing scenarios through the terrestrial and shallow marine Bengal basin are as follows. (A) The interglacial 
Ganges and Brahmaputra discharge separately, or together as they do today, to shorelines located in inner shelf 
positions. Although some mud is transferred to the basin floor through the slope canyon, sand is trapped near 
the inner shelf shoreline. (B) The glacial-period Ganges and Brahmaputra occupy separate coastal-plain and 
cross-shelf incised valleys, discharge mud and sand to different parts of the shelf margin, and feed separate 
slope canyons and sand-rich channel-levee systems on the Bengal Fan to produce parent DZ U-Pb populations. 
(B) The Ganges and Brahmaputra join and occupy the same incised valley, and discharge to a common slope 
canyon to feed a single sand-rich channel-levee system to produce a 50–50 mix in DZ U-Pb populations. (D) 
The Ganges and Brahmaputra occupy the same incised valley, but partial avulsion of the Ganges results in 
partial discharge of Ganges load to one canyon, and partial discharge of the Ganges plus the complete load of 
the Brahmaputra to a different canyon. This same scenario could apply to partial avulsion of the Brahmaputra as 
well. Background image from Google Earth (Map data: SIO, NOAA, U.S. Navy, NGA, GEBCO; Image; Landsat/
Copernicus).
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the margin and delivered sediments to different canyons (Fig. 6B), and at other times merged on the shelf-margin 
delta plain, and discharged to the same canyon (Fig. 6C,D).

It is easy to see how a completely mixed DZ U-Pb population represents an idealized case where both rivers 
approach peak sediment discharge at approximately the same time, they merge within a common incised valley 
that transfers sediment through a former highstand delta plain, and they extend to the shelf margin where they 
feed a single slope canyon and basin-floor channel-levee system (Fig. 6c). Cases where 100% of the model Ganges 
signal is mixed with only part of the model Brahmaputra, or vice versa, are less straightforward, but modern 
rivers provide two simple process-based alternative models worthy of consideration. One would be a completely 
merged GB as above, but turbidites recorded by our samples were ignited when one river was at peak sedi-
ment discharge and the other was not. Peak discharge for the modern Ganges is almost a month earlier than the 
Brahmaputra due to west-to-east migration of monsoon rains12, and it is not uncommon for large rivers like the 
Ganges and Brahmaputra to have multiple peaks each year due to out-of-phase tributary inputs. An alternative 
model assumes that avulsions are not instantaneous but take centuries to complete: the sediment load of either 
the Ganges or Brahmaputra can be split over that time period if one river has avulsed to join the other, or avulsed 
away from a merged system to deliver sediments to a different part of the shelf margin, but left behind a distribu-
tary that still transports part of the sediment load (Fig. 6d). As noted above, this type of split in sediment load has 
been the case for the Ganges River in historic times22.

Summary
The detrital zircon U-Pb record of the Miocene through Pleistocene Bengal Fan represents an important archive 
of Himalayan tectonics and climate, climate-forced sea-level change, and autogenic surface dynamics. The general 
DZ population reflects strong tectonic and climatic forcing, and long-term drainage integration, which drives 
sediment transfer from Himalayan source terrains to the continental margin and land-sea boundary. Moreover, 
late Miocene- through Pleistocene-age zircons from the eastern Himalayan syntaxis record unique aspects of 
Himalayan tectonics and topographic evolution, and show that signal transfer is not only faithful to Himalayan 
source terrains and surface processes, but geologically rapid. Within this broader context, the large-scale transfer 
of turbidite sand from the continental margin to distal basin-floor fan settings is inherently episodic because 
it requires climate-forced sea-level fall associated with global ice volume increases, so that the Ganges and 
Brahmaputra Rivers extend their courses to the shelf-margin and connect with canyon-feeder systems. Within 
the boundary conditions and process framework established by tectonic and climatic systems, and climate-forced 
sea-level change, the record of sediment mixing or the lack thereof represents the fingerprints of autogenic avul-
sions on signal transfer from source-to-sink.

Methods
For IODP 354, the research vessel JOIDES Resolution drilled a 7-site transect at 8°N across the middle Bengal 
submarine fan2. A total of 1.7 kilometers of core was obtained from the 7-site transect, resulting in recovery of 
abundant turbidite sand and silt ranging in stratigraphic age from ~18 Ma to the present (Figs 1, S1,S2, Tables S1 
and S2).

We collected 25 unconsolidated samples of Bengal Fan turbidite sand and silt from IODP 354 cores, with 
samples ranging in age from Early Miocene to mid Pleistocene (Tables 1, S1 and S2), and two samples from the 
modern Ganges and Brahmaputra Rivers some 100 km upstream from their confluence. Our IODP 354 turbidite 
sands mostly sampled individual turbidite units, which were evident from core images and shipboard physical 
properties that show fining-upward grain-size trends and sedimentary structures on the scale that we sampled or 
larger. Other samples were collected from thick, structureless sands that were demonstrably continuous between 
sections of a particular coring interval, but had flowed or no longer retained their original physical stratification. 
We assign approximate ages to each sample based on existing biostratigraphic constraints (see Tables S1 and S2), 
and extrapolation between those constraints, although our interpretations do not rely on specific age estimates.

Approximately 1–2 kilograms of sediment from each sample underwent heavy mineral separation, and indi-
vidual detrital zircon grains were then selected for mounting and imaging. U-Th-Pb laser ablation geochronol-
ogy was conducted at the Arizona LaserChron Center (more details of the analytical methods are provided in 
the data repository), using the high-resolution sector ICP-MS at the University of Arizona (Element 2, Thermo 
Fisher) and a fixed 20 micron laser ablation spot size63. We use backscatter-electron (BSE) images to identify 
grain interiors, so as to avoid younger overgrowths, and where possible we place spots on grain cores to ensure 
targeting of the original protolith ages. We targeted ~300 individual zircon grains (n = 300) for U-Pb analyses of 
grain cores64,65: U-Pb ages with >10% discordance were discarded (~10% of all zircons analyzed), resulting in a 
total of 6602 concordant U-Pb ages from the Bengal Fan and 535 concordant ages from the modern Ganges and 
Brahmaputra Rivers, an average of ~270 numerical ages per sample. For each analysis, we use 206Pb/238U ages for 
grains <1 Ga, and 206Pb/207Pb ages for grains >1 Ga. Analytical details are provided in the Supplemental Data and 
can be downloaded from the community database http://geochron.org.

We use plots of normalized kernel-density estimates (KDE) and cumulative probability to visualize DZ U-Pb 
age populations (Figs 2B,C, 3 and 5A), whereas we use multi-dimensional scaling (MDS) to identify statistical 
relationships between samples, or the lack thereof (Fig. S8). Normalized KDEs and MDS plots of zircon U-Pb 
age spectra were produced using the methodology and scripts developed and described by Vermeesch66,67 and 
available at http://www.ucl.ac.uk/~ucfbpve/provenance/.

We also deploy a simple mixing model to test whether samples represent a mix of Ganges and Brahmaputra 
sediment. Mixing models can take several forms. One seeks to predict and/or explain the distribution of ages 
within the population by simulating contributions of different parts of a drainage basin, including geologic units 
and their areal extent, as well as concentration of zircons in river sands68–70. The form we deploy seeks to explain 
populations that appear to be daughter products derived from 2 or more parent populations41. Because modern 
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river DZ U-Pb populations are different from those of the Bengal Fan, as discussed above, we use samples 13 and 
9 as the end-member Plio-Pleistocene Ganges and Brahmaputra parent signals, respectively.

Our mixing models utilize normalized KDEs calculated from samples 9 and 13 and exported using 
DensityPlotter 7.366. Parent populations are simply the KDE plots of samples 9 and 13, whereas daughter popula-
tions take the form in equation 1:

= +Z aX bY (1)i i i

where Zi = the daughter KDE for age i, Xi = the Ganges parent KDE for age i, Yi = the Brahmaputra KDE for age i, 
and a and b represent proportional contributions of the Ganges and Brahmaputra, respectively, to the total load. 
We then plot cumulative probability for Late Pliocene and Pleistocene Bengal Fan samples in Fig. 5A, and parent 
and daughter mixes in Fig. 5B.

Mixed populations likely reflect autogenic processes operating in the delta region, in particular avulsion, 
which can result in merging or separating the Ganges and Brahmaputra, such that they discharge one combined 
population or two separate populations to the coastal ocean. The modern sediment load of the combined GB 
system is 30% derived from the Ganges, and 70% derived from the Brahmaputra12. Hence, for a 100% merge of 
the two rivers sediment load, the mixing model takes the form of Zi = 0.3Xi + 0.7Yi. Several important caveats 
bear on interpretation of mixed populations in the Bengal Fan. First, part of the modern Ganges load may be 
diverted through distributaries, and not reach the Brahmaputra confluence, such that the load differential we 
use is a transient phenomenon. By one estimate21, the Ganges load that is diverted to distributaries is roughly 
equal to the current load of the lower Ganges just prior to joining the Brahmaputra, meaning that if the entire 
Ganges load merged with the entire Brahmaputra load, contributions would approach 50% from each system, or 
Zi = 0.5Xi + 0.5Yi. Second, the two rivers peak at slightly different times due to inherent differences in hydrology12 
(Fig. DR9), including differences in snowpack and time of arrival of the monsoon. It is therefore likely that avul-
sion produces the mixed signal, but composition of the mixed population may record turbidites that were ignited 
during a time when one river was reaching its seasonal peak sediment discharge, and the other had yet to reach 
its peak, or its peak had passed, and its contribution to the total load was diminished.

We model the following scenarios:

 A. Base case, 100% of the modern Ganges and Brahmaputra loads, Zi = 0.3Xi + 0.7Yi.
 B. 50% Ganges load plus 100% Brahmaputra, Zi = 0.15Xi + 0.7Yi.
 C. 100% Ganges load plus 50% Brahmaputra, Zi = 0.3Xi + 0.35Yi.

Scenario A represents the current load differential, whereas Scenario B can represent 50% Ganges load and 
100% Brahmaputra, as indicated, but is mathematically similar to a case where the Ganges has not yet reached 
peak sediment discharge but the Brahmaputra has. Scenario C can represent 100% of the Ganges load and 50% of 
the Brahmaputra, as indicated, but is mathematically similar to a case where the Brahmaputra has already peaked, 
and is in recession in terms of its sediment load by the time the Ganges reaches peak sediment discharge, or a case 
where the Ganges load is actually significantly larger than modern data suggests, perhaps due to a single channel 
with no distributaries.
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