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Abstract:

The spatial distribution of snow water equivalent (SWE) is a key variable in many regional-scale land surface models. Currently,
the assimilation of point-scale snow sensor data into these models is commonly performed without consideration of the spatial
representativeness of the point data with respect to the model grid-scale SWE. To improve the understanding of the relationship
between point-scale snow measurements and surrounding areas, we characterized the spatial distribution of snow depth and SWE
within 1-, 4- and 16-km2 grids surrounding 15 snow stations (snowpack telemetry and California snow sensors) in California,
Colorado, Wyoming, Idaho and Oregon during the 2008 and 2009 snow seasons. More than 30 000 field observations of
snowpack properties were used with binary regression tree models to relate SWE at the sensor site to the surrounding area SWE
to evaluate the sensor representativeness of larger-scale conditions. Unlike previous research, we did not find consistent high
biases in snow sensor depth values as biases over all sites ranged from 74% overestimates to 77% underestimates. Of the 53
assessments, 27 surveys indicated snow station biases of less than 10% of the surrounding mean observed snow depth. Depth
biases were largely dictated by the physiographic relationship between the snow sensor locations and the mean characteristics of
the surrounding grid, in particular, elevation, solar radiation index and vegetation density. These scaling relationships may
improve snow sensor data assimilation; an example application is illustrated for the National Operational Hydrologic Remote
Sensing Center National Snow Analysis SWE product. The snow sensor bias information indicated that the assimilation of point
data into the National Operational Hydrologic Remote Sensing Center model was often unnecessary and reduced model
accuracy. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

The western USA largely depends on mountain snowmelt
for water supply (Barnett et al., 2005; Bales et al., 2006).
Quantifying this source of water is particularly important
for water resource management to support municipal,
industrial and agricultural sectors. In mountainous
regions, complex interactions of climatological and
physiographic variables have limited our understanding
of the processes controlling water availability from
snowmelt. Such complicating factors include substantial
temperature and precipitation gradients with elevation,
distinct wet–dry seasonal transitions and great interannual
climate variability (Bales et al., 2006). Enhanced knowledge
of subalpine hydrological processes, particularly those
governing snow accumulation and melt, will enable a
more precise hydrologic modelling and a clearer under-
standing of the potential effects of climate change on
water availability.
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Hydrologic modelling in mountainous regions with
seasonal snow cover has historically been limited by the
paucity of ground-based hydrometric measurements –
especially with regard to snow observations. Remote
sensing has been successfully used to estimate the spatial
distribution of snow water equivalent (SWE) at larger
regional (e.g. >100 000 km2) and global scales across
relatively uniform terrain (Lee et al., 2005; Derksen,
2008; Tedesco and Narvekar, 2010). However, the
limitations in accuracy and the relatively coarse spatial
resolution make remote sensing techniques insuffi-
cient for characterizing snowpack at watershed scales
(e.g. ~1000 km2) (Cline et al., 1998). As a result, a breadth
of research has resolved SWE distribution via interpolation
of ground-based measurements (Carroll and Cressie,
1996; Balk and Elder, 2000; Winstral et al., 2002;
Fassnacht et al., 2003; Anderton et al., 2004; Molotch
et al., 2005; Lopez-Moreno et al., 2010). Those
approaches have provided important information for
updating, evaluating and calibrating distributed hydrologic
models and remote sensing retrieval algorithms. An
important aspect of using ground observations in the
context of broader-scale SWE estimation is the issue of
the spatial representativeness of point measurements and



Figure 1. Western USA showing the areas of the three study regions: (1)
SN, (2) US SR and (3) PNW. Snow station locations used in this study
are marked with a blue triangle, the SNOTEL network is marked with

yellow stars
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the model grid cell scale. Indeed, numerous studies indicate
that individual point observations of SWE are not
necessarily representative of the surrounding grid element
(Molotch and Bales, 2005, 2006; Neumann et al., 2006;
Rice and Bales, 2010; Lopez-Moreno et al., 2011).
Meteorological data, SWE and other snowpack attributes

in the western USA are primarily collected at more than 730
monitoring sites such as snowpack telemetry (SNOTEL)
stations operated by the National Resources Conservation
Service (NRCS, 2010). In California, a similar network of
more than 110 stations is maintained independently by the
California Cooperative Snow Survey (CA-DWR, 2010).
Because these data are used for regression-based water
supply prediction models, the snow station locations were
selected to represent the hydrologic and general environ-
mental conditions of a given watershed and typically in
specific locations where snow accumulates earlier and
ablates later than surrounding areas (Daly et al., 2000).
However, many sites in mountain watersheds, which may
be more representative than current monitoring stations,
are not easily accessible; thus, the sites selected for snow
stations may not be representative of SWE in their respective
watersheds (Molotch and Bales, 2005). Moreover, because
these data are frequently used to update and evaluate
hydrologic models, the relationship between the point SWE
and the mean SWE of the surrounding grid cell must be
determined to assess how representative a given snow
station site is relative to the surrounding grid cell.
Identifying consistent relationships between the point
measurement and the surrounding grid is very useful
because it can facilitate upscaling point snow station SWE
measurements to the surrounding area, thus improving
snowpack SWE estimation.
The primary objective of this study was to improve the

understanding of the relationship between the measured
SWE at snow stations and the SWE of the surrounding
grid element. The specific objectives were (i) to evaluate
how representative data from selected snow stations are
relative to the mean observed snow depth and SWE of the
surrounding grid, (ii) to determine how snow station
representativeness changes from accumulation to melt
and at varying spatial scales and (iii) to evaluate the
model assimilations of SWE by the National Operational
Hydrologic Remote Sensing Center (NOHRSC) in the
context of the snow station sampling biases.
Study area

This study focused on 15 sites in the western USA in
three different geographic regions, including Sierra Nevada
(SN), Southern Rockies (SR) and Pacific Northwest
(PNW) (Figure 1). Within each region, sites were selected
to include as much intraregional variability in climatic
regime within the constraints of resources and field team
travel times. Five sites in the SN were selected, including
two sites in Yosemite National Park and three sites in the
Eastern Sierra. The elevation of these sites ranged from
2149m at Gin Flat to 2957m at Rock Creek (Table I). As a
result of the significant elevation and climate gradients
Copyright © 2012 John Wiley & Sons, Ltd.
associated with orographic precipitation, the variability in
average annual maximum SWE accumulation at the SN
sites is considerable at 800mm (Table I). Within the USA
SR region, six sites cover a broad range of climate
conditions with a low elevation of 2573m at South Brush
Creek, Wyoming, and a high elevation of 3109m at
Lizard Head, Colorado. All sites were chosen for having
long-term data – at least 25 years – and based on their
variation in snow climatology built on work from Fassnacht
and Derry (2010). A large latitudinal range is represented in
this region from approximately 38�N to 43�N. The average
SWE accumulation at these sites is highly variable, with a
low of 335mm at South Brush Creek, Wyoming, and a high
of 640mm at Togwotee Pass, Wyoming. Four sites in the
PNW were selected; two sites in the interior PNW in
Idaho and two sites in central Oregon in the Cascade
Range were selected. The PNW sites cover a range of
elevations from 975 to 1460m, and average annual
maximum SWE accumulation is highly variable with a
low of 257mm at Sherwin, Idaho, and a high of 991mm
at Hogg Pass, Oregon.

Study period

The study was carried out around the approximate time
of maximum snow accumulation and near the middle of
the 2008 and 2009 snowmelt seasons. In general, the time
of maximum SWE accumulation was mid-March through
mid-April, and the middle of the snowmelt season
generally was in mid-April to mid-May depending on
location (for exact survey dates, see Appendix A).
Relative to the 30-year average 1 April snow course
SWE values (anomalies from 1971 to 2000 average) at
each site, the SR and SN sites generally had below
Hydrol. Process. 27, 2383–2400 (2013)



Table I. Attributes of the 15 snow stations used in the analysis

Average temperature (�C)a,b

Site no. Site Location (dd) Elevation (m)a,b Maximum SWE (mm)c 2008 2009

1 Gin Flat, California 37.768, �119.773 2149 930 8.6 7
2 Ostrander, California 37.638, �119.553 2499 958 7.7 6.8
3 Mammoth Pass, California 37.611, �119.034 2835 1176 2.7 3.7
4 Rock Creek, California 37.459, �118.736 2957 333 1.8 2
5 Virginia Ridge Lakes, California 38.072, �119.238 2879 483 4.9 4.9
6 Niwot Ridge, Colorado 40.037, �105.546 3021 318 2.2 3.1
7 Togwotee Pass, Wyoming 43.75, �110.059 2920 640 �0.6 0.1
8 Joe Wright, Colorado 40.532, �105.888 3085 546 1.1 2
9 Lizard Head, Colorado 37.802, �107.924 3109 409 1.4 2.3
10 Dry Lake, Colorado 40.534, �106.782 2560 577 3.4 4.4
11 South Brush Creek, Wyoming 41.328, �106.504 2573 335 3 3.8
12 Sherwin, Idaho 46.951, �116.34 975 257 6 6.7
13 Moscow, Idaho 46.807, �116.855 1433 533 5.7 6.7
14 Santiam Junction, Oregon 44.434, �121.945 1140 406 5.9 7.1
15 Hogg Pass, Oregon 44.42, �121.857 1460 991 4.9 6.1

a Source: NRCS National Water and Climate Center.
b Source: CA-DWR California Data Exchange Center.
c Values are average values of 1 April SWE from 1971 to 2000, measurements from nearby snow courses and snow stations
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average peak SWE values in both 2008 and 2009,
whereas PNW sites had close to average or above average
peak SWE values (Figure 2). Snow courses very close to
snow stations in this study were used for this comparison
because of their longer record at most sites.
METHODS

To assess snow station point-to-area biases of each site,
we conducted distributed snow surveys around each
station at peak snow accumulation and during snowmelt
in both 2008 and 2009. At all sites, snow depths were
interpolated to the 1, 4 and 16 km2 area surrounding the
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Figure 2. SWE anomalies of the two study years, 2008 and 2009, from the 1
SN sites, sites 6–11 are SR sites

Copyright © 2012 John Wiley & Sons, Ltd.
stations using binary regression tree models. Snow station
biases were then examined (i) by evaluating the difference
between observed snow depth at each station and the
mean of the snow survey, (ii) by evaluating the difference
between observed snow depth at each station and binary
regression tree estimates of snow depth from the
surrounding areas at 1, 4 and 16 km2 scales and (iii) by
evaluating SWE biases at 1, 4 and 16 km2 scales using
our snow density observations combined with binary
regression tree results. We take this approach so that we
can evaluate biases using both the direct snow survey
observations and a statistical model that allows us to
extend the analysis to scales larger than the sampled area.
2008 Anamolies

2009 Anamolies

April 1971–2000 average of snow courses and snow stations. Sites 1–5 are
and sites 12–15 are PNW sites

Hydrol. Process. 27, 2383–2400 (2013)
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Moreover, by extending our bias estimation to SWE,
we place these assessments in the context of the most
hydrologically relevant variable. Detailed descriptions of
these methods are described in the following sections.

Field methods

During each of the snow surveys, depth measurements
were collected around each snow station using a 1-cm
diameter aluminium probe along 11 transects spaced 100
m apart (Figure 3). Along each transect, points were
sampled with a spacing of 50m forming a 1-km²
rectangle surrounding the snow sensor site for a total of
approximately 231 point locations (Figure 3). Triplicate
depth measurements were taken at each survey point for
the SR and SN sites, whereas five measurements were
taken at each point for PNW sites (centre, north, south,
east and west). The number of depth samples for each
survey and site can be found in the appendix with the
number of observations made in 2008 totalling 15 379
and 19 761 in 2009.
Snow density, grain size and shape and snow

temperature were measured with a minimum of one
snow pit per site near the snow pillow, as well as one to
four other pits in open areas and under canopy locations.
Snow density was measured with a 1000-ml stainless
steel snow cutter at 10-cm intervals; a 250-ml stainless
steel snow cutter was used at some PNW sites at 10-cm
intervals. At some surveys in the PNW, a standard
Federal Sampler was used in the interest of time, given
the deep snowpacks that developed at some of the higher
elevation sites. Federal Sampler measurements were
adjusted based on known biases (Work et al., 1965;
Goodison et al., 1981). Density values from each pit were
averaged to calculate an average site snow density value.
Differences in snow density measurement protocols were
considered when interpreting results.
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Figure 3. DEM (30-m resolution) and location of snow depth
measurements around the South Brush Creek SNOTEL site. Contour
lines are at 30-m intervals. Black centre square marks SNOTEL location.
Black dots represent locations of snow depth measurements. At each dot,

three or five depths were sampled

Copyright © 2012 John Wiley & Sons, Ltd.
Snow station networks

Data from the SNOTEL and the California snow sensor
networks were compared with our field measurements. In
both sensor networks, each station generally consists of a
snow pillow for SWE, an air temperature sensor and a
storage precipitation gauge. Some enhanced SNOTEL
stations also collect additional data including soil moisture
and temperature, solar radiation, wind speed/direction,
humidity, barometric pressure and precipitation (tipping
bucket rain gauge).

Binary regression tree models

Measured snow depth point values were interpolated to
1, 4 and 16 km2 scales at a 30-m resolution using binary
regression tree models (Chambers and Hastie, 1993). In
the regression tree model formulation, we used different
combinations of the independent variables described in the
next section to predict snow depth. The combinations of
variables used in tree model development were determined
through cross validation in which 100 iterations of model
runs were performed (Molotch et al., 2005). Variables and
regression tree model sizes that minimized model deviance
were selected as optimal predictors following commonly
applied procedures (Balk and Elder, 2000; Erxleben et al.,
2002; Molotch et al., 2005). The methods used to perform
the cross validation and to construct the regression trees are
thoroughly explained by Molotch et al. (2005).
At the watershed scale, snow depth and SWE distribu-

tion studies have shown that nonlinear relationships exist
between snow accumulation and topographic variables
(Elder et al., 1991; Elder et al., 1998;Molotch et al., 2005).
Regression tree snow depth models account for these
nonlinearities and have been used in a variety of studies to
model snow depth distribution (Elder et al., 1998; Balk and
Elder, 2000; Erxleben et al., 2002; Winstral et al., 2002;
Molotch et al., 2005). These empirically derived models
are built through a process known as binary recursive
partitioning, splitting the data into progressively more
homogenous subsets until reaching a user-specified number
of terminal nodes. The split at each branch is chosen such
that the sum of the squared deviations from the mean is
minimized (Chambers and Hastie, 1993). These regression
models have limited utility over larger areas with relatively
sparse observations because they may not adequately
capture the range of physical parameters controlling
snow dynamics. In situations where spatially dense snow
sampling has been conducted, regression tree models
provide a powerful means to resolve relationships between
physiography and snow distribution to estimate the spatial
variability of snow depth and SWE surrounding each snow
station site in the study areas.
Regression tree model output consists of spatially

continuous estimates of snow depth around individual
snow stations. Biases using these snow depth surfaces
were determined by comparing snow depth values at
SNOTEL and California snow sensor locations to the
average regression-tree estimated snow depth over the
1-, 4- and 16-km2 areas surrounding each site. Similarly,
Hydrol. Process. 27, 2383–2400 (2013)
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SWE biases were estimated by comparing snow station
SWE observations to estimates of surrounding grid-element
SWE. SWE distribution was estimated by multiplying
the average snow pit density value at each site by the
regression-tree modelled snow depth in each 30-m pixel
and dividing by the density of water (Erxleben et al., 2002;
Molotch et al., 2005). Far fewer density measurements
(compared with depth measurements) can be used to
characterize an area’s SWE because density varies much
less in a given area than depth (Goodison et al., 1981).

Physiographic variables

We used the following independent variables to
construct the regression tree models and to interpolate
snow depth (dependent variable) at each site: elevation,
index of clear sky, potential incoming solar radiation,
percent canopy cover, slope, aspect and maximum
upwind slope. The selection of these variables was based
on results from related studies (Elder et al., 1998; Balk
and Elder, 2000; Erxleben et al., 2002; Winstral et al.,
2002; Molotch et al., 2005), which demonstrated that
these variables explain snow distribution relatively well.
Elevation data were obtained from the Shuttle Radar
Topography Mission finished 1 arc second digital
elevation model (DEM) for each site (Farr et al., 2007).
Slope and aspect were derived from the DEM using a
geographic information system.

Shortwave radiation. A shortwave radiation index was
calculated from the DEM for each 30-m pixel of each site
using a variation of the methods of Molotch et al. (2005).
Daily potential incoming shortwave radiation was
calculated per pixel for the 15th day of each month using
the ESRI ArcGIS Solar Analyst tool (Fu and Rich, 1999),
starting from 15 November 2007 to the 15th day of the
given survey month in 2008. For 2009 surveys, the daily
potential incoming shortwave radiation was calculated from
15November 2008 until the 15th day of the respective 2009
surveymonth. For each year, the average of these individual
days was then calculated and used as an index of total snow
season solar radiation (Molotch and Bales, 2005; Molotch
et al., 2005).

Maximum upwind slope. The mean maximum upwind
slope (Sx) is a parameter that helps explain the variability
in snow deposition and scour due to wind redistribution
and specific terrain features (Winstral et al., 2002;
Molotch et al., 2005). The meteorological data used to
estimate prevailing wind direction were obtained from
the following sources for each site: California Data
Exchange Center (California sites), MesoWest (Oregon
sites), Center for Snow and Avalanche Studies (Lizard
Head Pass, Colorado), Desert Research Institute’s Storm
Peak Laboratory (Dry Lake, Colorado), NOAA’s
Quality Controlled Local Climatological Data from the
National Climatic Data Center (Joe Wright, Colorado,
and South Brush Creek, Wyoming), Idaho National
Laboratory (Idaho sites), NRCS (Togwotee Pass, Wyoming)
Copyright © 2012 John Wiley & Sons, Ltd.
and University of Colorado Ameriflux towers on Niwot
(Niwot Ridge, Colorado).

Vegetation. Vegetation density can have a large effect on
snow distribution by changing the energy balance at the
snow–atmosphere interface, by intercepting precipitation
and by affecting the surface roughness and winds that
transport snow (McKay and Gray, 1981; Musselman
et al., 2008; Molotch et al., 2009; Veatch et al., 2009). To
account for these processes in our regression tree model,
we obtained percent canopy cover data as a proxy for
vegetation density for each site from the National Land
Cover Database (NLCD) (http://www.mrlc.gov/). The
30-m resolution NLCD values range from 0 to 1, where
0 indicates no canopy and 1 indicates a completely
closed canopy.

NOHRSC National Snow Analysis data assimilation

The NOHRSC National Snow Analysis (NSA) system
is a distributed model primarily used to estimate SWE
distribution across the USA and parts of Canada. For a
system of its scale, the NSA contains a relatively detailed
physical representation of the processes that control snow
accumulation and melt at a 1-km2 spatial resolution. The
model contains an explicit characterization of snowpack
properties such as snow temperature, snow density and
snow depth. The model energy balance includes an
explicit representation of incoming and outgoing solar
and long-wave radiation and turbulent fluxes. The model
estimates of SWE are routinely compared with the
observed SWE at snow stations, and if model errors
exceed a given threshold, the ground-based snow station
SWE observations are assimilated into the model (Carroll
et al., 2001). Because a snow station’s depth or SWE do
not necessarily represent the surrounding 1-km2 grid cell
in topographically complex regions, such assimilation
procedures could benefit greatly from detailed assessments
of snow station representativeness.
Considering NSA’s modelled SWE is updated or

assimilated to the observed value at a given snow station
once a residual exceeds a threshold value, we examined
the difference between the NSA-modelled SWE and the
snow station observed SWE at the time of station SWE
assimilation. NSA SWE and assimilation information
were obtained from NOHRSC (http://nohrsc.noaa.gov/,
accessed 10/2011). We then compared those differences to
the point-to-area biases we found from field observations
to assess NSA data assimilation within the context of snow
station representativeness.
RESULTS

Field surveys

The mean snow depth of all Colorado surveys was
127.7 cm and ranged from 0 to 330 cm. The mean density
was 340 kgm�3, and thus mean SWE was 434mm
(Table II). The mean SWE at the California sites was
Hydrol. Process. 27, 2383–2400 (2013)
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Table II. Summary of 2008 and 2009 snow depth and snow density measurements made during the peak accumulation and mid-melt
field campaignsa

2008 2009 2008 2009

Peak Mid-melt Peak Mid-melt Peak Mid-melt Peak Mid-melt

Colorado California
Minimum 0 0 0 7 0 0 0 0
Maximum 305 330 283 266 316 277 348 311
Mean 148.9 128.5 118.7 114.5 150.5 65.7 136.8 75.2
SD 31.7 54 48.8 40.7 63.5 59.6 77.5 78.9
Mean density 320 370 310 340 430 440 370 410
Mean station depth 148.3 114.3 113.8 105.5 156 66.8 148.4 81

Idaho Oregon
Minimum 0 0 0 0 10 0 30 0
Maximum 290 227 325 214 441 356 425 306
Mean 134.1 76.5 127.6 37.5 269.5 184.4 203.8 104.5
SD 52.9 51.6 62.9 41.4 65.2 64.2 64.7 67.6
Mean density 383 446 330 440 400 505 380 440
Mean station depth 161.5 90.5 154.4 85.5 245.9 149.95 194.5 105

a Snow depth values are in centimetres; snow density values are in kilograms per cubic metre.
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439mm, the average snow depth was 107.1 cm and the
average snow density was 410 kgm�3; snow depths
ranged from 0 to 348 cm. The average snow depth at
Idaho sites was 93.9 cm, with depths ranging from 0 to
325 cm. The average density was 400 kgm�3, giving
an average SWE of 376mm. Similar to the California
surveys, the more maritime snowpack in Oregon rendered
higher average densities (430 kgm�3) and a much deeper
snowpack (average depth, 190.6 cm; range, 0–441 cm).
Thus, the greatest SWE was observed at the Oregon sites
with a mean of 819mm (for greater regional detail and
survey-specific data, see Table II and Appendix A).
The determination of snow station representativeness is

a fairly subjective process. We assess representativeness
using 10% bounds around the mean and median observed
values. We recognize the 10% threshold as being fairly
arbitrary, but it provides a means to summarize our results
across all sites. In this regard, 6 of 13 sites in the 2008
accumulation season had snow depth values at the snow
station that were within 10% of the mean of the
surrounding area. During the 2008 melt season, 5 of 11
sites were within the 10% threshold. During the 2009
accumulation period, 9 of 15 sites were representative of
the surrounding grid at the 10% threshold, and 7 of 14
sites were representative during melt season assessments.
Overall, 27 of the 53 surveys had SNOTEL or snow
station biases within 10% of the surrounding mean
observed depth, and 40 of 53 were within 20% of the
surrounding mean observed depth (Figures 4a–4d).
Cumulative probability plots of snow depth near peak

accumulation reveal the spatial variability around snow
stations. Snow station representativeness based on the
�10% about the median threshold is indicated by the
regions bounded by the dotted lines in Figure 5. These
cumulative probability plots show the distribution of snow
depth around SNOTEL sites with respect to the median
snow depth value (intersection at the 0.5 probability value)
Copyright © 2012 John Wiley & Sons, Ltd.
as well as areas above and below the 40th and 60th
percentiles (intersection of the 0.4 and 0.6 probability
values). Similarly, the shapes of these distribution functions
reveal the nature of the variability in snow depth across the
continuum of measured values; steeper slopes indicate
relatively uniform distributions and shallow slopes indicate
relatively heterogeneous distributions.
SR sites show little consistency between years, although

most indicate that the SNOTEL underestimates snow depth
(Figure 5a). Of the 53 surveys, 14 indicated that the
SNOTEL provided a representative value for peak snow
depth. The slopes of the cumulative probability lines are
very similar, indicating similar spatial variability in snow
depth at the SR sites except two Joe Wright surveys and the
Togwotee Pass survey,which hadmore variable distribution
as indicated by the lower slopes in the cumulative
probability plots (Figure 5a). SR surveys from mid-melt
also show only two sites (Dry Lake and South Brush Creek
both in 2008) to be within 10% of the median observed
snow depth value, demonstrating that most sites during melt
were not representative of the surrounding 1-km2 grid.
Interestingly, most cumulative probability plots at the SR
sites (Figures 5a and 5b) show similar levels of spatial
variability in snow depth as indicated by the relatively
consistent slopes of the lines. Thus, sites such as JoeWright
consistently deviated from the other sites.
At the SN sites, depth biases were relatively consistent

from year to year during the accumulation surveys. In
particular, Ostrander and Gin Flat sites had positive biases
in both years, and the relative magnitudes of these biases
were consistent from year to year, falling in the 70th to
85th percentiles in both years. Similarly, both the
Mammoth Pass and the Rock Creek sites reported negative
biases during accumulation in both years with biases
mostly falling in the 30th to 50th percentile. Only one site
in the SN region during accumulation fell within 10% of
the median snow depth (Figure 5c). During mid-melt,
Hydrol. Process. 27, 2383–2400 (2013)
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Figure 4. Percent bias of each snow station compared with the surrounding mean of observed depths; for example, 13% positive bias means the snow
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identified as they are numbered in Table I; for example, site 11 is South Brush Creek, Wyoming. Shaded bars are percent biases from 2008 surveys, and
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each plot. Joe Wright a and b in 2009 are due to the additional surveys at during peak accumulation and mid-melt
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however, three SN sites were within 10% the of median
snow depth of the surrounding areas (Figure 5d). Overall,
observed snow depths exhibited a larger range in the SN
versus the SR.
At the PNW sites, depth biases were somewhat

consistent from year to year during accumulation. The
Moscow Mountain site overestimated snow depth relative
to the surrounding area with depth values falling in the
70th to 90th percentile in both years. Conversely, the
Sherwin site was more representative in both years with
SNOTEL depth values falling around the 60th percentile
relative to the surrounding area. The Hogg Pass and the
Santiam Junction sites exhibited neutral to negative biases in
both years falling between the 10th and the 50th percentile
(Figure 5e). PNW sites show similar slopes on the
cumulative probability plots with more even distributions
during accumulation than duringmid-melt. Mid-melt slopes
on the cumulative probability plots for Hogg Pass in both
2008 and 2009 show a tail in snow depth distribution more
skewed toward shallower depths. However, like California
sites, there is a large amount of variability in snow depth
from site to site; for example, Hogg Pass had consistently
greater depths than the other sites during both survey seasons.
During both accumulation and mid-melt surveys, three
SNOTEL sites fell within 10% of the median snow depth
of the surrounding areas (Figures 5e and 5f). Thus, both
mean and median-based assessments of ‘representative’
snow stations show that less than half of all surveys
indicated representative snow stations. Furthermore, the
station biases were frequently consistent in sign and
magnitude from year to year – an important discovery that
is revisited in the discussion section.
Copyright © 2012 John Wiley & Sons, Ltd.
Binary regression trees

The regression tree models explained 47% of the spatial
snow depth variability on average across all sites and
years. R2 values varied greatly but were greater than 0.4 for
23 of the 39 stable models, and 10 were greater than 0.6,
indicating relatively strong explanatory capability. Idaho
sites had the highest average R2 values averaging 0.57
during the accumulation surveys and 0.61 during mid-melt
surveys. Averaged over all sites in all regions, R2 values
during the accumulation season (0.44) were 14% lower
than during mid-melt (0.50), indicating strong statistical
relationships between independent variables and snow
distribution during the ablation season (Table III).
Regression tree model size was constrained based

on the cross validation of model deviance and tree size
(Molotch et al., 2005). The number of terminal nodes,
which minimized model deviance while maximizing the
returned tree size, was selected. By maximizing tree size
near the minimum model deviance, an increased R2 is
achieved. For example, model deviance at Dry Lake,
Colorado, inMay 2008 reached aminimumof approximately
12 terminal nodes with the model using the independent
variables solar radiation, elevation, maximum upwind slope,
vegetation and slope. Although R2 values are not criteria for
tree size selection, it is important to note that R2 values began
to plateau at more than 12 terminal nodes. Hence, the model
deviance criterion avoids overfitting the model (Figure 6).
The regression tree was constructed for this site using the
aforementioned variables and specifying 12 terminal nodes
(Figure 7). This procedure was repeated for all regression
tree models.
Hydrol. Process. 27, 2383–2400 (2013)



0

1

0

0.2

 0.4

0.6

0.8

1 c)

0

0.2

0.4

0.6

0.8

1

08 Mammoth Pass

09 Mammoth Pass

08 Rock Creek

09 Rock Creek

08 Gin Flat

09 Gin Flat

08 Ostrander

09 Ostrander

08 Virginia Lakes Ridge

08 Virginia Lakes Ridge

d)

f)

0.2

 0.4

0.6

0.8

e)
08 Moscow

09 Moscow

08 Sherwin

09 Sherwin

08 Hogg Pass

09 Hogg Pass

08 Santiam

09 Santiam

0 100 200 300 4000 100 200 300 400

0 50 100 150 200 250 300

0 50 100 150 200 250 300 0 50 100 150 200 250 300

0 50 100 150 200 250 300

a) b)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Snow Depth (cm)

08 Lizard Head
08 S. Brush Creek
09 S. Brush Creek
09 Togwotee Pass
08 Dry Lake
09 Dry Lake
08 Niwot Ridge
09 Niwot Ridge
08 Joe Wright
09 Joe Wright a
09 Joe Wright b

Accumulation Mid-Melt

Figure 5. Statistical distribution of snow depth. Snow station depth values are marked with diamonds, and the dotted line region highlights �10% of the
median snow depth values. Plots of snow accumulation in the SR, SN and PNW are shown in plots a, c and e, respectively. Mid-melt plots for the SR, SN

and PNW are shown in panels b, d and f, respectively

2390 L. MEROMY ET AL.
Regression tree snow depth models produced from data
at some sites were unstable. This was indicated by a lack
of minima in graphs of deviance versus the number of
terminal nodes (Chambers and Hastie, 1993). Unstable
models were produced from data at five sites during peak
accumulation surveys and four sites during mid-melt
surveys (Table III). Model instability at these sites was
likely due to in part the relatively low topographic
variability that diminishes relationships between snow
depth and physiography. Less varied topography will
generally require a much larger sample size to produce a
stable model. In total, 53 surveys were conducted.
However, the four surveys at Hogg Pass and the one at
Togwotee Pass were not used to create regression trees
because not all independent variables could be obtained.
There were 48 regression assessments that in total produced
39 stable regression tree models. Thus, snow station
Copyright © 2012 John Wiley & Sons, Ltd.
representativeness assessments based on regression tree
models were limited to these 39 cases with stable models.
The size of the regression tree models also varied from

site to site, from year to year and for accumulation versus
ablation season. Overall regression tree model sizes six
and seven terminal nodes for the 2008 accumulation and
ablation seasons, respectively. In 2009, tree model size
was seven terminal nodes for the accumulation and 8 for
the melt season on average. Tree model sizes ranged from
4 to 12 terminal nodes in 2008 and from 4 to 13 terminal
nodes in 2009. Regional differences show that California
and Idaho tree models had the largest average number of
terminal nodes (Table III).
The identification of the physiographic variables

controlling snow distribution may provide an explanation
of snow station biases relative to the surrounding areas. In
this regard, the highest-ranking variables (level 1 in the
Hydrol. Process. 27, 2383–2400 (2013)



Table III. Cross validation of R2 results

Site Peak 2008 No. T
nodes

Mid-melt
2008

No. T
nodes

Peak 2009 No. T
nodes

Mid-melt
2009

No. T
nodes

1 Gin Flat, California 0.44 9 0.41 5 0.46 10 0.42 5
2 Ostrander, California N/M – N/A – 0.44 10 0.50 10
3 Mammoth Pass, California 0.30 6 N/M – 0.35 7 0.24 5
4 Rock Creek, California 0.45 6 0.42 5 0.38 7 N/M –
5 Virginia Lakes Ridge, California N/A – 0.60 10 0.64 11 0.65 8
6 Niwot Ridge, Colorado 0.38 – 0.35 5 0.28 5 N/M 5
7 Togwotee Pass, Wyoming N/A – N/A – N/A – N/A –
8 Joe Wright, Colorado 0.26 4 0.60 8 0.28 4 0.20 4
9 Lizard Head, Colorado 0.30 5 N/A – N/A – N/A –
10 Dry Lake, Colorado 0.48 5 0.70 12 0.42 5 0.59 8
11 South Brush Creek, Wyoming 0.56 – N/A 5 N/M – 0.28 5
12 Sherwin, Idaho 0.39 6 0.29 5 0.39 6 N/M –
13 Moscow Mountain, Idaho 0.81 12 0.76 10 0.67 9 0.79 13
14 Santiam Junction, Oregon 0.15 – 0.30 4 0.58 7 0.81 11
15 Hogg Pass, Oregon N/A – N/A – N/A – N/A –

N/A, no survey was performed at that time or that the data were otherwise unable to be processed; N/M, the model was unstable with no minimum
deviance; No. T nodes, the number of terminal nodes specified in the regression tree construction.
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Figure 6. Plots of (a) model deviance versus number of terminal nodes
and (b) R² versus number of terminal nodes for Dry Lake, Colorado, May
2008. These indicate optimal tree size in this case is 12 terminal nodes

Figure 7. Regression tree snow depth model, Dry Lake, Colorado (May
2008), with 12 terminal nodes. Each node represents a snow depth; regular
nodes have no surrounding shape, and terminal nodes are rectangles. Srad,
potential shortwave solar radiation; elev, elevation; veg, 2001 NLCD

percentage of canopy cover data; maxus, maximum upwind slope
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regression tree; e.g. Figure 7) controlling snow depth
were solar radiation and maximum upwind slope during
the 2008 and 2009 accumulation season; aspect was also
significant during accumulation in 2009 (Table IV). Solar
radiation was a consistent correlate of snow distribution
as indicated by its persistent appearance in upper tree
levels in both years. Similarly, elevation was consistently
Copyright © 2012 John Wiley & Sons, Ltd.
important as indicated by its frequent presence in the
second and third tree levels. Vegetation was also
important for many sites, with the percentage of canopy
cover frequently appearing in the second regression tree
level (Table IV). Slope was typically ranked lower than
other variables, although there is a significant correlation
between the slope and aspect and the solar radiation
index. Solar radiation likewise dominated the highest
levels for the 2008 and 2009 melt season models, with the
NLCD percentage of canopy cover as the second most
frequently occurring variable in the first tree level
(Table IV).
Maps of SWE distribution (Figure 8) help illuminate

snow station biases when examined in tandem with bias
Hydrol. Process. 27, 2383–2400 (2013)



Table IV. Frequency of appearance of physiographic variables at different levels in regression tree snow depth models for peak
accumulation and ablation surveysa

Accumulation Potential SW radiation Elevation (m) MAXUS NLCD Slope Aspect

Tree level 2008 2009 2008 2009 2008 2009 2008 2009 2008 2009 2008 2009
1 3 4 1 1 3 2 1 1 0 0 1 3
2 5 4 5 5 1 1 5 4 1 1 0 2
3 1 2 5 6 4 6 2 1 2 3 0 3
4 0 6 3 1 2 3 1 2 0 1 0 0
5 0 2 1 2 1 1 0 1 0 0 0 1
6 1 0 0 1 0 1 0 1 0 0 0 1
Ablation 2008 2009 2008 2009 2008 2009 2008 2009 2008 2009 2008 2009
1 5 4 0 0 2 1 3 3 0 0 0 1
2 2 3 3 3 6 1 5 1 2 4 1 6
3 3 6 8 10 5 2 2 1 0 0 0 0
4 7 3 1 2 2 3 0 2 0 0 0 2
5 0 1 7 4 1 0 0 1 0 0 0 1
6 0 2 0 0 1 0 1 0 1 0 0 0

MAXUS, maximum upwind slope.
a For example, a value of six for solar radiation at tree level four indicates that solar radiation appeared in the fourth level on six of the models that year.

SWE (mm)SWE (mm)SWE (mm)
900 1680 180 430 540 880

a) Dry Lake CO, May 2008 b) Niwot Ridge, CO April 2008 c) Santiam Junction, OR May 2008

SWE (mm) SWE (mm) SWE (mm)
608200 4050 50940

d) Ostrander, CA April 2009 e) Virginia Lakes Ridge, CA May 2008 f) Moscow Mountain, ID May 2009

Figure 8. Spatial distribution of modelled SWE during mid-ablation periods. Each map is 4 � 4 km; the centre white box (1 km²) highlights the area
surrounding the SNOTEL or snow station survey location (white dot) and the terrain immediately around it. Note that different scales are used to

illustrate spatial variability in SWE at each site
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and cumulative probability plots (Figures 4 and 5). The first
panel in Figure 8 shows a very high degree of modelled
spatial variability in SWE at Dry Lake, Colorado, in May
2008. Themost highly ranked variable on the regression tree
for this site and time was solar radiation followed by
vegetation and slope, the patterns ofwhich can be seen in the
ribbon-like features from east to west. Note that despite this
considerable spatial variability, the snow station SWE value
was quite representative (Figure 8a, white box; Figure 4a,
Site #10; Figure 5b, red line). At theNiwot Ridge, Colorado,
site, the SNOTEL SWE value was also quite representative
whereas the spatial variability of SWE around the SNOTEL
was considerably lower (Figure 8b). In this regard, we see
Copyright © 2012 John Wiley & Sons, Ltd.
that Niwot Ridge consistently had representative SWE
values (Figure 4a) because of the uniform distribution and
representative placement of the station. At the Santiam
Junction, Oregon, site, we also note a fairly uniform spatial
SWEpattern but a low bias in the snow station location (note
the light green of surrounding area vs the orange area at
SNOTEL in Figure 8c); these low biases occurred in three of
four assessments (Figure 4d). At the Ostrander, California,
site, we note a spatial SWE pattern that varies at a relatively
larger scale with the snow station location in an area of
relatively high accumulation (observe the northwest to
southeast pattern of increased SWE shaded blue-green in
Figure 8d). This site consistently had high (>10%) biases in
Hydrol. Process. 27, 2383–2400 (2013)



2393SUBGRID VARIABILITY OF SWE AT OPERATIONAL SNOW STATIONS
all three assessments (Figure 4b). TheVirginia Lakes Ridge,
California, site is placed in an area of high SWE
accumulation (note the green area in Figure 8e); SNOTEL
depth values consistently overestimated the surrounding
area by greater than 40% (Figure 4b). Similarly, the
Moscow Mountain, Idaho, site was placed in an area of
relatively high SWE accumulation (blue-green area in
Figure 8f) with snow depth biases exceeding 30% in three of
four assessments (Figure 4c).
Because of the spatial heterogeneity of snow depth and

SWE, the modelled snow depth and SWE also vary at
different spatial scales. On average and across all scales,
SWE biases (the snow station SWE point observation
compared with the mean surrounding modelled SWE)
were of greater magnitude during mid-melt compared
with accumulation. Of the 15 pairs of accumulation
versus mid-melt assessments, 9 assessments show
increases in bias during mid-melt (Figure 9). Whether
the biases were positive or negative tended to follow
different patterns by region. For models at peak
accumulation, 1- and 4-km2 scales had a lower magnitude
bias, thus indicating that SWE is more accurately
estimated at smaller spatial scales. The total magnitude
of biases was greater in 2009 versus 2008 across all three
spatial scales and regardless of time in the snow season.
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The one exception to this is the peak accumulation bias at
16 km2; the average bias at this scale and seasonal timing
was 9.97 cm for 2008 and slightly less at 9.57 cm for 2009
(Table V). These trends are further discussed in the
following section.
An opposite trend is evident in the model biases at the

three spatial scales during accumulation compared with
melt. At peak accumulation, the magnitude of the model
biases increases with increasing spatial scale from 1 to
16 km2. However, the model biases generally decrease as
spatial scale increases during snowmelt (Table V). Of the
39 models, 21 had at least a 15% difference in SWE bias
across all three spatial scales (Figure 9). Of these sites, just
over half were from models during snowmelt assessments.
The percent bias plots modelled at the three spatial

scales reveal few sites with consistent biases from peak
accumulation to mid-melt or from year to year. Only two
sites during the same seasonal timing in 2008 and 2009
(site 1, Gin Flat peak accumulation; site 2, Mammoth
Pass peak accumulation; Figures 9c and 9d) show a
similar sign and magnitude percent bias. From peak
accumulation to mid-melt within the same year, only
three sites (site 8, Joe Wright in 2008 and 2009; and site
13, Moscow in 2009) show similar sign and magnitude of
model percent bias (Figures 9a, 9b and 9f).
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Table V. Statistics of SWE percent bias at three scales

1-km2 peak 1-km2 melt 4-km2 peak 4-km2 melt 16-km2 peak 16-km2 melt

Colorado 2008 �0.70 �1.89 �0.24 �2.11 1.57 �0.31
Colorado 2009 �4.27 �7.98 �3.90 �11.31 �1.19 �11.76
California 2008 �3.60 9.56 �2.12 4.88 �1.01 �0.51
California 2009 12.07 6.40 9.53 5.36 9.21 7.21
Idaho 2008 12.91 42.41 17.20 35.83 27.33 32.81
Idaho 2009 19.29 40.43 15.68 26.76 11.76 16.00
Oregon 2008 �14.32 �17.22 �14.63
Oregon 2009 �0.20 �53.15 11.01 �61.80 16.13 �64.65
Average 2008a 5.74 17.05 6.52 15.01 9.97 12.06
Average 2009a 8.96 26.99 10.03 26.31 9.57 24.91
Total averagea 7.58 22.02 8.52 20.66 9.74 18.48

a Averages are all averaged absolute values of percent bias.
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NSA NOHRSC application

As an example application of how the snow station
biases reported earlier can affect hydrologic model
results, we focus on the NOHRSC NSA system (Carroll
et al., 2001; Rutter et al., 2008). Following the work of
Molotch and Bales (2005), we examined the difference
between the NOHRSC-modelled SWE and the snow
station observed SWE. NOHRSC evaluates residuals
between the observed SWE at snow stations and their
modelled 1-km2 SWE estimates on a daily basis. On the
basis of the magnitude of these residuals, a decision is
made as to whether modelled SWE will be updated
(assimilated) to the observed value. We compared the
NOHRSC-modelled SWE, observed SWE and our
observed biases just before an ‘assimilation’ period and
found that, in many circumstances, the bias in NOHRSC’s
model is consistent but inversely proportional to the bias of
the snow station measurement. This indicates that the
model is actually estimating grid-element SWE better than
the point observation at the snow station.
For the 50 of our surveys for which NOHRSC has

modelled SWE, 31 surveys displayed this relationship.
Specifically, 18 surveys showed a positive snow station
bias – the snow station overestimating SWE with regard
to the surrounding 1 km2 survey – coinciding with the
NOHRSC model underestimating SWE and assimilating
the model to the snow station observation. Virginia
Lakes Ridge in 2008 demonstrates this case well. The
NOHRSC model underestimates the SNOTEL observed
SWE (Figure 10a); however, according to our snow
survey data, the observed SWE at the SNOTEL site is
much higher than the observed SWE over the surrounding
1-km2 area. Specifically, average observed SWE was
17 cm less than the SNOTEL SWE, resulting in a 74%
overestimate at the SNOTEL. The consideration of this
bias when evaluating NOHRSC model residuals in this
example would indicate that updating the model to the
observed SWE might be unwarranted.
Thirteen surveys showed that snow stations were

underestimating SWE with regard to the surrounding
1 km2, whereas the NOHRSC model overestimated SWE.
The NOHRSC model bias and the surveyed percent bias
at Santiam Junction in May 2008 show that the model
Copyright © 2012 John Wiley & Sons, Ltd.
overestimated the observed SNOTEL SWE, but the point
SNOTEL SWE significantly undersampled the SWE
relative to the surrounding grid element. The average
observed SWE across the grid was 12 cm greater than the
SNOTEL SWE, resulting in a 16% underestimate at the
SNOTEL (Figure 10b). In this example, the NOHRSC
model is again estimating the true grid-element SWE
better than the SNOTEL value, and thus assimilations
of the SNOTEL value would deteriorate model SWE
estimates and may therefore be unwarranted.
If we take into account these point-to-area biases of the

snow stations, we can derive an adjusted NOHRSC model
Hydrol. Process. 27, 2383–2400 (2013)
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bias that better represents the true residual. We were able
to show this improvement by adjusting the bias for 22
assessments (Figure 11). For example, site 3 (Mammoth
Pass, California) in Figure 11a shows that the snow station
underestimates SWE with regard to the surrounding grid by
approximately 5 cm, but the NOHRSCmodel overestimates
SWE by approximately 4 cm, and thus the adjusted model
bias is 1 cm of SWE. We note that at the three SN sites for
which NOHRSC does not take point assimilations
(Ostrander Lake, Mammoth Pass and Rock Creek), we
used modelled SWE values for the grid encompassing
each snow station location.
DISCUSSION

An unprecedented amount of distributed SWE data
enabled a geographically comprehensive analysis of snow
station representativeness and terrain controls on small-
scale snow depth variability in the western USA. Just
under half (11 of 24) of the surveys conducted during the
accumulation season had snow station depth values that
were within 10% of the mean observed depths over the
respective surrounding areas. Similarly, just over half
(15 of 29) of the surveys conducted during the melt
season had snow station depth values within 10% of the
mean observed depth (Figure 4). This demonstrates
snow depth and SWE biases from the point-to-area scale
and illustrates the large amount of subgrid variability that
is not typically accounted for in distributed land surface
and hydrologic models, even on the order of a 1-km2

resolution. One way to resolve this issue may be to
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redesign the sensor network such that four or five sensors
are placed at optimal locations (Rice and Bales, 2010)
instead of using one sensor to represent a larger, spatially
variable area. This could be sufficient to better estimate the
1-km2 spatial mean (Neumann et al., 2006).
Snow depth during the ablation period exhibited

greater subgrid variability. More variability during melt
is intuitive, given the high degree of spatial heterogeneity
associated with topographic controls on incident solar
radiation, which largely controls snowmelt distribution
(Marks and Dozier, 1992; Cline, 1997), and solar
radiation increases through the melt season. The high
tree level ranking of maximum upwind slope as well as
the frequency of elevation in the second and third levels
of the regression trees highlights the strength of the
topographic control on snow accumulation associated with
orographic effects and redistribution of snow by wind as
found by Anderton et al. (2004). Not all sites had variables
appearing consistently at certain levels. However, given the
overall consistencies from year to year in the variables that
control snow distribution, there are inherent consistencies in
the biases at the snow stations as noted previously. Hence,
the results from this 2-year study provide a means whereby
biases evaluated during this study can be applied to other
years and potentially in real time. In addition, we note that
although our results indicate consistent biases from year to
year in many cases, these results must be viewed with
caution as they are based on only 2 years of data. Further
study is needed to identify consistencies in snow station
biases over several years.
This higher observed subgrid variability during snowmelt

is also reflected in the modelled SWE (Figure 9 and
Table V). Differences in vegetation density will also affect
the net radiation and therefore influence melt timing and
magnitude as well (Faria et al., 2000; Veatch et al., 2009),
hence, it is expected that differences will increase between
any single point and the spatial mean. This variability
hampers ablation seasonmodelling efforts that are critical in
numerous hydrological and ecological studies focusing on
the spring melt pulse in snowmelt-dominated water systems
(DeBeer and Pomeroy, 2010). Thus, the consideration of
variability during both the accumulation and ablation season
in sensor network design is needed (Rice and Bales, 2010).
Additional complications in hydrologic modelling

include the greater variability of snow distribution in lower
accumulation years. As a result, significant nonlinearities
exist with regard to snowmelt model performance (e.g. the
NOHRSC model). The different results observed here
across sites and years are partially attributable to these
nonlinearities.
Differences in SWE distribution and modelled SWE

during snowmelt may be attributed to a few different
factors. Using mean snow density to interpolate SWE
assumes uniform density, which is a tenuous assumption.
However, Erxleben et al. (2002) indicated that snow
density is not well correlated to physiography, and
therefore complex interpolation models are unwarranted.
Differences in SWE distribution and modelling during
snowmelt may also be attributed to the differences in
Hydrol. Process. 27, 2383–2400 (2013)
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snow density observation methods in this study. As found
by Fassnacht et al. (2010), core samplers tend to
underestimate snow density compared with the more
labour-intensive traditional snow pits, particularly when a
snowpack is melting (Fassnacht et al., 2010). Snow pits
were dug at most surveys in this study; however, some
PNW surveys used a Federal Sampler (snow tube) or both
snow pits and a Federal Sampler to measure snow
density. We recognize that this may lead to potential
inaccuracies in SWE interpolation.
Examining modelled SWE at different spatial scales,

we found that the highest SWE biases at peak
accumulation occurred at the coarser scale of 16 km2

with the 4-km2 model, also showing higher biases than
at the 1-km2 scale. This has relevance to other
multiresolution snowpack modelling studies (Pavelsky
et al., 2011), which found better agreement between
model and point SWE when models were run at smaller
spatial scales (9 and 3 km2). Hence, our study can help
inform bias assessments for high resolution snowpack
modelling (Anderton et al., 2004; Caldwell et al., 2009).
Many in the hydrologic community assume point data

to be representative of an area for model evaluation, data
assimilation and refining remote sensing algorithms for
retrieval of snowpack characteristics (Daly et al., 2000;
Fassnacht et al., 2003; Pan et al., 2003; Andreadis and
Lettenmaier, 2006; Durand et al., 2008). However,
considering many biases found in this study, the
NOHRSC SWE model is actually estimating grid-element
SWE better than the point observation at the snow station,
explicitly accounting for the snow station biases that might
improve the NOHRSC SWE assimilation procedure and
better inform other modelling and data assimilation efforts.
Given the widespread use of the NOHRSC SWE product,
improvements in the SWE estimates will have dramatic
effects in a variety of scientific and management
disciplines (Azar et al., 2008).
We acknowledge that using the empirically derived

regression tree models to extrapolate snowpack informa-
tion to a 16-km2 grid may be problematic if the larger-scale
landscape encompasses a wider range of variables than
were used to create the model. However, for the purposes
of this study, we feel regression trees are justified because
the extrapolated area is relatively small and close to the
area where data were collected.
Of the previous studies using binary regression tree

snow distribution models (Elder, 1995; Elder et al., 1998;
Balk and Elder, 2000; Erxleben et al., 2002; Winstral
et al., 2002; Anderton et al., 2004; Molotch and Bales,
2005; Molotch et al., 2005; Musselman et al., 2008), only
those of Erxleben et al. (2002) and Molotch and Bales
(2005) were conducted at similar spatial scales and in
areas with relatively dense canopy cover. The explanatory
power of the regression tree models developed in the
present study (average R2 = 0.47) was good relative to
these two previous works (average R2 values of 0.25 and
0.56, respectively), particularly because the average R2

value of the top ten models in this study was 0.7. The
variability in regression model structure and explanatory
Copyright © 2012 John Wiley & Sons, Ltd.
power at the different sites is consistent with these
previous studies. This variability affirms the lack of
transferability of regression trees over larger scales
(Elder, 1995).
A major issue with snow station location physiography

is that they tend to be located in small forest gaps on flat
ground. The logistical difficulties of setting up instruments
on slopes and in dense vegetation can largely account for
snow station placement. This signifies a methodological
need to track SWE on different slopes with more varying
canopy coverage. One suggestion is that the SNOTEL
and California snow sensor networks could be expanded
to include a small cluster of depth sensors and snow
pillows so that SWE could be estimated from the snow
station-derived snow density. With the advancement of
wireless sensor networks (Kerkez et al., 2010), the
opportunity exists to establish a network of instrument
clusters to enhance the current SWE measurement
network. In addition, future snow measurement networks
could use the methods performed here to identify locations
that can consistently provide robust estimates of grid cell
mean SWE.
We have made the case that the SNOTEL bias should

be considered when doing model assimilations, yet the
biases are not always consistent between years and at
different times during the snow season. This indicates that
intensive surveys performed either manually or by remote
sensing techniques will not necessarily reveal general
SNOTEL site biases; they may just show biases at the
particular moment of the survey. There are several factors
contributing to the relationships between SNOTEL point
biases and NOHRSC model residuals. Further study is
needed for an exhaustive analysis of these factors. One
noteworthy point is that several snow stations are located
in small forest clearings, which favour the oversampling
of SWE – particularly around the time of peak
accumulation – compared with the densely forested
immediate surroundings (Gin Flat and Virginia Lakes
Ridge in California and Niwot Ridge in Colorado). Most
surveys at these sites did, in fact, show that the snow
station oversampled SWE relative to the surrounding
grid but the NOHRSC model undersampled SWE
(Figure 11a, b).
These bias relationships suggest that snow monitoring

strategies should be altered and that there is a need to find
another way to more accurately quantify snow distribution
over scales of 1 km2 or larger. Regression tree analysis
provides valuable information on key variables affecting
snow depth and could hence be used to design generalized
monitoring strategies as well as specific strategies if
resources exist for some form of intensive manual surveys
as were performed in this study. In addition, we only study
15 sites and what is greatly needed is a generalized
approach to estimate biases at all of the more than 700
SNOTEL sites in the west based solely on physiography.
The shaped solution approach of Melloh et al. (2008) is
one potential direction; modes of snow distribution
variability can be described in three-dimensional space
based on a variety of terrain-related explanatory variables.
Hydrol. Process. 27, 2383–2400 (2013)
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The data collected here could be used to derive shaped
solutions of snow depth (Melloh et al., 2008). Shaped
solutions that are consistent between sites of similar
physiography can be aggregated to develop ensembles of
generalized models that could be used to characterize
biases across the SNOTEL network.
CONCLUSION

Overall, we found that 27 of the 53 surveys had SNOTEL
or snow station biases within 10% of the surrounding
mean observed depth, and 40 of the 53 surveys were
within 20% of the surrounding mean observed depth. This
indicates that approximately half of the sampled sites had
representative snow station measurements relative to the
surrounding area. In addition, we found that modelled
snow depth and SWE also vary at different spatial scales;
21 of 39 scaling assessments had at least a 15% difference
in SWE bias between 1 and 16 km2. On average and across
all spatial scales, SWE biases (snow station SWE point
observation compared with the mean surrounding modelled
SWE)were of greatermagnitude duringmid-melt compared
with the accumulation season, highlighting the challenges
associated with using these point data to evaluate spatially
explicit models. In this regard, the comparisons between the
snow station biases observed in this study and the model
assimilations of the NOHRSC SWE product indicate that
the assimilations may degrade model performance because
the NOHRSC model is, in fact, estimating SWE more
accurately on a 1-km2 scale than the point snow station
observations. An improved understanding of point-to-area
scaling relationships will help improve snow depth and SWE
estimates for hydrologic modelling efforts in snowmelt-
dominated mountain catchments. More accurate SWE
estimates will become increasingly critical as water resources
in the westernUSA become progressively difficult tomanage
amid rapidly changing climate conditions.
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