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The utility of airborne scanning LiDAR data to estimate solar direct beam canopy transmittance in complex,
forested terrain was evaluated. Twenty-four hemispherical photos were used to produce ground-based esti-
mates of solar direct beam canopy transmittance. The photo estimates were used to develop and evaluate
two spatially distributed canopy transmittance models: 1) a Beer's Law-type transmittance model based
on LiDAR-derived canopy metrics, and 2) a solar raytrace model applied to a three-dimensional canopy
model. The models were used to estimate solar direct beam canopy transmittance at five-minute resolution
for all days between the winter and summer solstices over an 800 m by 700 m domain at 1 m horizontal grid
spacing. When compared to estimates from hemispherical photos, the raytrace model resolved the complex
seasonal and diurnal variability of solar direct beam canopy transmittance resulting from individual trees and
localized canopy structure. The Beer's-type model was unable to resolve these detailed factors. The two
models exhibited similar and relatively low normalized daily mean error values from December to early
March. Later in the season (01 March–21 June), the model differences were pronounced; the daily mean
and standard deviation of the error values for the Beer's-type and raytrace models were 13% ± 10% and
8% ± 6%, respectively. The results confirm previously known limitations of Beer's Law when used to estimate
sub-canopy solar beam irradiance under heterogeneous canopy conditions. Averaged over the spatial do-
main, the Beer's-type model estimated 21% and 48% lower canopy transmittance than the raytrace model
on 01 March and 03 May, respectively. The Beer's-type model was unable to represent the seasonal increase
in areal average canopy transmission contributed from small canopy gaps. Finally, both distributed models
were used to simulate the cumulative solar beam irradiance during the 2010 snowmelt season. The raytrace
model was shown to capture a high level of variability necessary to simulate explicit stand-scale solar irradi-
ance that strongly influences spatiotemporal patterns of snowmelt, soil water availability, and the partition
and exchange of energy within heterogeneous forest ecosystems.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The magnitude of solar radiation incident on a forest floor is a
major component of the sub-canopy surface energy budget and
plays an important role in diurnal latent and sensible heat fluxes in
forested areas. It has broad implications on fuel moisture and wildfire
hazard (e.g., Byram & Jemison, 1943) and seasonal snow water avail-
ability (e.g., Golding & Swanson, 1978). Incoming shortwave radia-
tion (i.e., 250–2500 nm wavelength band) is also a primary forcing
variable required by land surface and hydrological models to estimate
soil temperature and water content and snowpack temperature and
water equivalent.
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Compared to above-canopy global shortwave fluxes, the radiation
at the forest floor exhibits enhanced spatial and temporal variability
as a result of the sky track of the sun and the relative orientation
of terrain, canopy elements, gaps and clearings (e.g., Essery et al.,
2008; Gay et al., 1971; Pomeroy et al., 2008; Reifsnyder et al., 1971).
Conversely, diffuse solar radiation shows remarkable uniformity
even under heterogeneous canopy conditions (e.g. Pomeroy et al.,
2008; Reifsnyder et al., 1971). The variability of the sub-canopy solar
beam makes it impractical to use ground-based measurements to es-
timate seasonal dynamics of the diurnal mean and variance of surface
irradiance over spatial domains (e.g., 900 m2 to 1 km2). These scales
are of particular interest given that remotely sensed canopy metrics
(e.g., leaf area index or forest cover fraction) are derived at these inter-
mediate scales.

In land surface and hydrological models, canopy transmittance is
commonly estimated using effective leaf area index (i.e., LAI′) within
a variant of the Beer–Lambert law (Monsi & Saeki, 1953), hereafter
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referred to as a Beer's-type transmittance model. The method assumes
an exponential reduction of solar radiation through a random distribu-
tion of elements (Campbell & Norman, 1989). Various schemes have
been introduced to simulate the effect of canopy gaps and clumping
(i.e., non-randomness) (e.g., Chen et al., 1997a; Ellis & Pomeroy, 2007;
Nijssen & Lettenmaier, 1999). The resulting mathematical approxima-
tions are generally adequate to estimate the average daily sub-canopy
irradiance, although uncertainty increases with canopy heterogeneity
(Pinty et al., 2004). Notwithstanding, the Beer's-type approach may
have limited utility for simulating nonlinear processes such as those
governing snowmelt (Gray & Male, 1981) when the assumption of a
homogeneous canopy is not satisfied (e.g., canopy edges around forest
gaps and clearings). To address this issue, a recent study used high-
temporal resolution estimates of solar direct beam canopy transmit-
tance from upward looking hemispherical photographs to improve
sub-canopy snowmelt model accuracy (Musselman et al., 2012a). The
results highlighted the utility of detailed canopy information as well
as the nonlinear melt behavior of snow cover. Hemispherical photo
estimates of solar direct beam canopy transmittance can be advanta-
geous compared to expensive ground-based sensor options that require
regular maintenance, particularly in seasonally snow-covered environ-
ments. Like ground-based sensors, however, the canopy information
from photos is limited to specific locations and does not provide infor-
mation about the spatial patterns of canopy transmittance.

Models capable of simulating spatially explicit, physically based
processes can improve the integration between traditionalmonitoring
andmodeling techniques. Advances at these scales will ultimately im-
prove understanding and prediction of hydrological states and fluxes
and associated feedbacks with climate and ecological processes at
larger scales (Bales et al., 2006). In this regard, high-resolutionmodels
can be used to evaluate scale discontinuities between ground-based
observations and larger-scale processes commonly measured by re-
mote sensing techniques or simulated by land surface or climate
models. For example, high-resolution spatially distributed canopy
transmittance estimates could be used to force snow models at the
stand-scale for evaluation against ground-based measurements and
remotely sensed snow covered area products (e.g., Raleigh et al.,
2013; Varhola et al., 2012). This type of analysis is critical in steep, for-
ested terrain where few ground-based measurements exist, seasonal
snow cover duration is prolonged, and the accuracy of remote sensing
products is unresolved (Molotch & Margulis, 2008).

Airborne scanning light detection and ranging (LiDAR) has increas-
ingly been used to estimate biophysical canopy parameters such as
canopy cover and: LAI′ (e.g., Korhonen et al., 2011; Lefsky et al., 1999;
Lovell et al., 2003; Morsdorf et al., 2006) as well as forest stand biomass
(e.g., Frazer et al., 2011) and canopy light transmittance (e.g., Essery
et al., 2008; Parker et al., 2001; Todd et al., 2003; Varhola et al., 2012).
Frazer et al. (2011) provides a general description of how spatially
explicit forest parameters are commonly obtained from LiDAR and
ground-based measurements. For example, analogs exist between the
physics used in canopy measurements from LiDAR and the indirect
estimation of canopy metrics from upward looking hemispherical
photography using gap fraction techniques. Particularly, photo-derived
LAI′ has been shown to be closely and inversely proportional to
LiDAR-derived canopy penetration indices computed at photo locations
(Corona et al., 2012; Morsdorf et al., 2006). The Laser Penetration Index
(LPI) (Barilotti et al., 2006) is defined as the fraction of all point returns
classified as ground normalized by the total return count:

LPIij ¼
mGij

mGij þmVij
ð1Þ

where mGij and mVij are the number of ground and vegetation returns
per unit area, respectively. Subscripts i and j refer to the respective
grid cell column and row. The normalization of ground returns by
total returns removes local variations in the sampling density as a result
of overlapping flight paths. Improved relationships between LPI and
photo-based LAI′ are obtained when LiDAR returns are averaged over a
spatial domain centered on each grid element (e.g. Morsdorf et al.,
2006). The spatial averaging of the ground and vegetation returns
is analogous to how LAI′ is determined from a hemispherical photo
(i.e. computed over many zenith and azimuth ranges (Campbell &
Norman, 1989)). The spatial extent of LiDAR data averaging necessary
to obtain the best agreement with photo-derived LAI′ varies as a result
of view geometry differences between the photos and LiDAR, local
vegetation density, and canopy height (Morsdorf et al., 2006). For
example, Barilotti et al. (2006) reported an improved relationship be-
tween ground-based LAI and LiDAR-derived LPI when the ground and
vegetation returns were smoothed using a 5 m nearest-neighbor filter.
Morsdorf et al. (2006) conducted a sensitivity analysis and found the
best agreement with 15 m circular averaging. The results indicate that
ground calibration is an important step to generating an LAI′ proxy
from LiDAR returns.

The field-calibrated spatial map of LAI′ could be used within a
Beer's-type model to simulate spatially explicit canopy transmittance
at high-resolution. The results, however, would face similar limitations
to those of point-scale radiative transfer applications of a Beer's-type
approach in heterogeneous forest environments (e.g., Pinty et al.,
2004) in that the method is not directionally explicit with regard to
the sun's position relative to canopy gaps.

A treatment of directionality of solar canopy transmittance is
possible using ray tracing methods to evaluate the impact of the
3-D canopy orientation on the solar beam transmittance. For exam-
ple, a 3-D raytrace model populated with LiDAR-derived forest struc-
ture promises to yield the most physically realistic estimates of solar
canopy transmittance in heterogeneous forested terrain. To date, no
studies have explicitly simulated the sub-canopy solar beam canopy
transmittance at high spatial (i.e., 1-m) and temporal (i.e., 5-min)
resolution for a stand-scale (i.e., >0.5 km2) topographically complex
forested area.

The objective of this paper is to evaluate the use of airborne
LiDAR data to estimate solar direct beam canopy transmittance.
Photo-derived, high-resolution estimates of solar beam canopy trans-
mittance were used to evaluate two spatially distributed canopy
transmittance models: 1) a Beer's-type transmittance model based
on LiDAR-derived LAI′ and forest cover fraction, and 2) a solar
raytrace model applied to a 3-D canopy derived from multiple
LiDAR flights. Finally, the two models were used to estimate the cu-
mulative solar beam irradiance for the 2010 snowmelt season in the
southern Sierra Nevada. The paper is organized as follows. Section 2
presents the data acquisition, study area, and a description of the
hemispherical canopy photographs and airborne scanning LiDAR
data processing. Sections 3 and 4 detail methods used to estimate
spatially explicit solar direct beam canopy transmittance from LiDAR
including a Beer's-type approach (Section 3) and a raytrace model
(Section 4). Evaluation methods are presented in Section 5. Section 6
includes the results and discussion and Section 7 highlights the
conclusions.

2. Data collection and processing

2.1. Study site

Work was conducted within the Wolverton basin of Sequoia Na-
tional Park, California, USA (36.59°N, 118.717°W) (Fig. 1). The forest
in the region is predominantly mature red fir (Abies magnifica). The
average LiDAR-derived tree height was 32 m ± 9 m (the tallest
trees exceeded 60 m heights) and the canopy was largely discontin-
uous in nature with many gaps and a few larger meadows (Fig. 1).
A 7 m domain-average canopy diameter was determined by manual
analysis of canopy pixels (Fig. 1) for individual trees within two
100 m × 100 m sub-domains.



Fig. 1. The study area and inner model domain showing the elevation contours in 15 m increments, the LiDAR-derived canopy height, and the locations of hemispherical photo-
graphs used for calibration of the ray-tracing model (empty circles) and analysis (filled circles). The location and image of Photo #1 are included.
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Data analyses were conducted within two spatial domains, an outer
and an inner domain (Fig. 1). The outer domain was 1 km × 1 km and
ranged in elevation from 2420 m to 2757 m. The 800 m × 700 m inner
sub-domain (Fig. 1) was used to estimate direct beam canopy transmit-
tance as described in Sections 3 and 4. The domain extent and nesting
was chosen to include a high local ridgeline to the south and a smaller
north–south oriented ridge to the west; the configuration ensured
that any local terrain that might cast shade on the inner domain was
included within the outer domain boundary.

2.2. Hemispherical canopy photographs

Twenty-four upward-looking canopy photographs were obtained
within the model domain at locations indicated in Fig. 1. Photos were
taken in September 2009 under low light conditions for improved con-
trast between vegetation and sky. The camera wasmounted at a height
of 1.5 m, leveled and oriented as in Frazer et al. (2000). The photo
processing software Gap Light Analyzer (GLA) Version 2.0 (Frazer
et al., 1999) was used to georegister and classify images as sky and
non-sky elements (see example in Fig. 1). The binary pixelswere aggre-
gated into discrete sky regions to determine the directional sky view
factor at one-degree angular resolution as in Musselman et al. (2012b).

The photos were used to estimate explicit, time-variant direct
beam canopy transmittance at five-minute temporal resolution for
each of the 24 photo locations for all days between the winter and
summer solstices (see Musselman et al., 2012b). Solar beam transmit-
tance was estimated by sampling the fraction of sky to total pixels
within a one-degree pixel corresponding to the solar coordinates.
Explicit transmittance estimates from 12 of the 24 photos (calibration
photos; Fig. 1)were used to calibrate the raytracemodel (see Section 4).
The remaining 12 photos (analysis photos; Fig. 1) were used to evaluate
two LiDAR-derived, spatially distributed canopy transmittance models:
(1) a Beer's-type model (see Section 3) and (2) a ray tracing model
(see Section 4). The 12 analysis photos were chosen to correspond to
locations of automated snow depth sensors described in Musselman
et al. (2012a, 2012b).

2.3. Airborne scanning LiDAR data

The National Center for Airborne Laser Mapping (NCALM)
obtained LiDAR data during flights flown over the region in March
(i.e. snow-on) and August (i.e. snow-off) 2010. Data were obtained
with an Optech (Toronto, Canada) Gemini Airborne Terrain Mapper
(ALTM) mounted in a twin-engine Cessna Skymaster. The ALTM
emits a pulse rate of 167 kHz at a wavelength of 1064 nm and
includes up to four range measurements; first, second, third, and
last returns with a scan angle range of ±14° (NCALM, 2012). The re-
turn classification information was provided within the LAS binary
file format (ASPRS, 2012) produced by NCALM. The point data classi-
fied as surface returns were used by NCALM to produce Digital
Terrain Models (DTM) at 1 m spatial resolution from the August
flight data (i.e. ground height; DTMground) and the March flight
data (i.e. snow surface height; DTMsnow) using a filter method similar
to that of Kraus and Pfeifer (1998) (NCALM, 2012). These gridded
products were used to separate surface returns from forest canopy
returns as described in Section 3. The March and August flights
yielded all-return mean point density values within the domain of
11.5 returns m−2 and 14.6 returns m−2, respectively. To evaluate the
best agreement between LPI and photo-derived LAI′, three point cloud
data products were analyzed:March flight returns, August flight returns,
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and a combined product of all returns from both flights (see Section 3).
The combined flight data were examined for their potential to represent
an increased sample density of the 3-D canopy space. Using the com-
bined returns from both flights, the forest structure (i.e. excluding sur-
face returns) was represented with a domain-average canopy return
density of 18.259 returns m−2; a total of 18.259 million returns over
the 1-km2 domain.

3. Beer's-type model of solar direct beam canopy transmittance
from LiDAR

The Beer's-type model used to estimate canopy transmission is
presented in Appendix A. The model is based on estimates of LAI′
from hemispherical photos (e.g., Black et al., 1991; Campbell &
Norman, 1989). The model is modified specifically for the direct
beam as in Gryning et al. (2001) by reducing transmittance through
canopy gaps with a geometric shading factor that accounts for the ef-
fect of tree geometry and solar elevation angles on gap transmission.
The Gryning et al. (2001)modification represents one of themore phys-
ically realistic Beer's-type approaches for estimating shortwave canopy
transmittance in sparse forests. The extension of the Beer's-type model
to a spatial domain, however, requires distributed estimates of canopy
openness and LAI′.

Ground-based LAI′ estimates were obtained from the twenty-four
hemispherical photos as described in Appendix B. The 24 LAI′measure-
ments were used to derive a spatial LAI′ proxy from the LiDAR-derived
Fig. 2. The number of LiDAR surface returns (i.e. mG; left column) and canopy returns (i.e
(i.e. LPI; right column) at one-meter horizontal grid spacing. The data from the August (top
LPI (Eq. (1)). A threshold value of 1 m above the DTMsnow height was
chosen to separate ground/surface returns from forest canopy returns.
Values above this threshold were considered canopy returns and in-
cluded in mVij in Eq. (1). Values below this threshold were considered
surface returns (mGij in Eq. (1)). The threshold provided a buffer to en-
sure the accurate classification of forest canopy returns and to provide
a fair evaluation of ground-based LAI′ and LPI computed from returns
from the snow-onMarchflight, the snow-off Augustflight and the com-
bined returns from both flights (Fig. 2).

The three LPI products were evaluated against ground-based LAI′
values to determine the optimal LAI′ proxy used in the Beer's-type
model. A sensitivity test was conducted to evaluate the effect of circu-
lar averaging on the statistical relationship between LAI′ and LPI
at photo locations as in Morsdorf et al. (2006). Filter radii of 5 m to
100 m in five-meter increments were used to produce 20 LPI maps
(i.e. LPIcirc) in addition to the native 1 m LPI map. The sensitivity
test was conducted separately for LPI values computed from the
March, August, and combined flight returns (a total of 60 LPI maps).
The LPIcirc values corresponding to the 24 photo locations (Fig. 1)
were sampled from each product. The (linear) regression computed
on photo-derived LAI′ and LiDAR-derived LPIcirc that resulted in the
highest R2 and lowest p-value was used to determine the optimal
LiDAR flight dataset and circular filter radius used to develop the LAI′
proxy over the inner model domain at 1 m horizontal resolution.

The LiDAR-derived forest cover fraction fc (Eqs. (A4)–(A6)) needed
for the Beer's-type model was specified as: fc = 1 − LPIcirc-opt, where
. mV; center column) per square meter used to estimate the Laser Penetration Index
row), March (middle row), and the combined flights (bottom row) are shown.

image of Fig.�2
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LPIcirc-opt was the optimal value determined from the circular filter
sensitivity test described above. The distributed forest cover fraction
and LAI′ products were then used in a Beer's-type estimation of solar
direct beam canopy transmittance following methods detailed in
Gryning et al. (2001) and summarized in Appendix A.

4. Raytrace model of solar direct beam canopy transmittance

A generalized flow chart of the main components of the raytrace
model is provided in Fig. 3. The model consists for two main compo-
nents: the 3-D voxel canopy model and the raytrace model.
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point return density (i.e., the canopy model robustness) and increase
the likelihood that elements would be unsampled by the LiDAR system
(e.g., Hagstrom & Messinger, 2012). In this study, the large scale of the
trees ensured that the one-meter voxel edge length adequately cap-
tured the general forest architecture. Note that the edge length was ap-
proximately 3% and 14% of the domain-average tree height and canopy
diameter, respectively. Additionally, the LiDAR horizontal error in ter-
rain with large topographic relief has been reported to be as high as 1
to 2 m (Cho et al., 2011). While the point cloud georegistration errors
were not evaluated in this study, the 1 m voxel size was deemed ade-
quate to minimize misrepresentation of the general forest structure
resulting from horizontal uncertainty.

The canopy returns were binned in the voxel space according to
the 3-D return coordinates. The March flight data classified as (snow)
surface returns were excluded from the voxel model by excluding re-
turn heights that met the condition: ‘DTMground b return elevation b

DTMsnow + 1’ (Fig. 3). The exclusion of near-surface returns ensured
that the LiDAR point data only contained information from forest
vegetation as it might impact the viewshed of a tripod-mounted
hemispherical photo or radiation at the snow surface; note that
the seasonal maximum snow depth within the domain was approxi-
mately 3 m in 2010 (Musselman et al., 2012b) and understory vegeta-
tion was generally lower than the 1.5 m height of a hemispherical
photo. Each voxel was prescribed a value corresponding to the num-
ber of point returns contained within that voxel extent. Voxels within
which no returns were measured were prescribed a value of zero.
Terrain was represented by filling the voxel space from the lowest
domain layer to the DTMground elevation as in Pyysalo et al. (2009).
Voxels representing terrain were specified to contain an arbitrarily
high return count of 50.

Because airborne LiDARmeasures the forest canopy from above, oc-
clusion by higher canopy elements reduces the probability that lower
branches and tree boles will be sampled (Popescu & Zhao, 2008). In
general, field observations of the red fir trees indicated reduced branch
structure in the lower half of the tree, but the tree bole volumes were
significant and must be accounted for in a 3-D raytracemodel. The hor-
izontal position of an individual tree bole can be estimated to be ap-
proximately beneath the tallest part of an individual tree top (Popescu
& Zhao, 2008). A simple local maxima algorithm was applied to the
voxel height data that identified pixels in which the canopy height
exceeded that of the eight nearest neighbors. Tree boles were repre-
sented in the voxel model at the location of the local maxima by filling
the voxel space from the DTM surface to a height of two-thirds the total
tree height. The two-thirds valuewas arbitrarily chosen to represent the
tapering diameter of the average tree bolewith height (Gray, 1956) and
to ensure that the modeled bole extended into the crown. The upper
portion of a tree canopy is much more likely to be sampled by the air-
borne LiDAR (Popescu & Zhao, 2008) thus negating the need to fill the
voxel space and the potential for over-representing the bole diameter
in the upper canopy. The bole diameter of the larger trees in the domain
exceeded the 1 m voxel edge length and in some cases exceeded three
meters. For this reason, the 32 m average tree height was used to parti-
tion trees into 1 m and 2 m bole diameters. Trees of height ≤ 32 m
were specified a 1 m diameter bole as previously described. Trees of
height > 32 m were specified a 2 m diameter tree bole extending to a
height of one-half the tree height and a 1 m diameter bole further
extending to a height of two-thirds the tree height. The boles were rep-
resented within the structured voxel grid by a stack of single voxels in
the case of a 1 m bole and a 2 × 2 horizontal group of vertically stacked
voxels in the case of a 2 m bole. Voxels representing tree boles were
specified an arbitrarily high return count of 50 as done with terrain.

4.2. Raytrace model

A simple voxel traversal algorithm (Amanatides & Woo, 1987)
was performed on each surface grid element within the inner model
domain (Fig. 3). The slope and direction of each ray were defined by
the solar elevation and azimuth angles, respectively, for a given time
step. The solar coordinates were computed as in Reda and Andreas
(2004) at five-minute time steps for daylight hours (i.e., solar
elevation > 0°) for every seven days between 21 December and 22
June. The seven-day interval was chosen to reduce computational
demand while still capturing the seasonal variability in the sun's sky
track.

The first component of the raytrace model required the initializa-
tion of the ray origin within the [800 m × 700 m × 340 m] inner do-
main (Fig. 3). For convenience, rays were initiated near the terrain
surface of each grid element and traversed the voxel space in the
direction of the sun. The ray origins were defined as 1 m above the
inner-domain LiDAR-derived DTMground height. Also required were
the 3-D coordinates of the intersection between each ray and a
bounding box defined by the [1000 m × 1000 m × 340 m] outer do-
main. The 3-D intersection coordinates were computed for each sur-
face grid element and time step of interest. The second component
of the voxel traversal algorithm was the calculation of the incremen-
tal traverse of the voxel space along a 3-D line defined by two points:
the origin and the intersection with the outer domain boundary
(Fig. 3). A computationally efficient digital 3D line drawing algorithm
(Amanatides &Woo, 1987) was used to identify which voxels to sam-
ple along a given ray path. For each time step and grid element, the
total count of canopy returns that were encountered along the ray
traverse was recorded. For example, if a ray originated at a grid ele-
ment located in a clearing at solar noon and only traversed empty
voxels (i.e., elements that did not include point returns) a value of
zero was recorded for that grid element and time step. Conversely,
if a ray bisected dense canopy at a low solar elevation angle, the
total returns accumulated along the voxel traverse was high. The
end result was a data array [800 m × 700 m × (five-min. daylight
time steps) × (27 seven-day intervals between and including the
solstices)] containing total return counts for each raytrace.

4.3. Raytrace estimate of solar direct beam canopy transmittance

It is assumed that solar direct beam canopy transmittance is
similar to that of a laser beam passing through the canopy (Barilotti
et al., 2006). In this regard, physical similarities likely exist between
the solar beam passing through the forest and the accumulated
LiDAR point returns along a ray-voxel traverse. A maximum return
(MR) parameter is presented that represents an upper limit of accu-
mulated point returns along a given ray path, above which threshold
value full canopy attenuation of the incoming solar direct beam is
assumed. Time series of direct beam canopy transmittance DBTij(t)
at each photo location (i,j) were computed as

DBTij tð Þ ¼ 1−
MIN returnsij tð Þ;MR

� �
MR

ð2Þ

where returnsij(t) represents the accumulated LiDAR point returns
along a ray path originating at the photo location at time step t.
A sensitivity test was conducted to evaluate the MR parameter and
the relationship between the explicit photo-derived direct beam
canopy transmittance and the raytrace model results. A subset of 12
of the 24 photographs was used to calibrate the MR parameter. The
mean absolute error (MAE) was computed between the explicit
photo-derived direct beam canopy transmittance and that derived
from the raytrace model for MR parameter values ranging from 1
to 300. The MR value that minimized the average MAE from all 12
photos was used to compute the raytrace-derived solar direct beam
canopy transmittance (Eq. (2)) for the inner model domain and all
time steps. The remaining 12 photos were reserved for independent
verification analysis and comparison of results to the Beer's-type
canopy transmittance model as described in the next section.
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Finally, a linear interpolation was applied to the 5-min canopy
transmittance values simulated at seven-day intervals to estimate
the solar direct beam canopy transmittance at 5-min time steps for
all days between the winter and summer solstices.

5. Evaluation methods

The bulk and raytrace estimates of solar direct beam canopy trans-
mittance were first evaluated against the explicit photo-derived can-
opy transmittance product of Musselman et al. (2012b) at locations of
12 hemispherical photos (i.e., the point-scale). The result from these
12 locations was a time series of canopy transmittance error values
for every five-minutes of each simulated day. Two metrics were eval-
uated: 1) the normalized daily error and 2) the normalized daily ab-
solute error. The normalization of the canopy transmittance errors
involved a temporal weighting based on the above-canopy simulated
clear-sky incoming solar radiation magnitude. Clear-sky global in-
coming solar radiation at five-min. time steps (i.e. RS↓ clear,t) was com-
puted as in Allen et al. (2006). The weighting scheme was first
applied to obtain daily mean error values, xi,

xi ¼
Xn
t¼1

RS↓clear;t

∑n
t¼1RS↓clear;t

xt ð3Þ

where xt is the transmittance error at five-min. diurnal time steps t
when the sun is above the horizon. For example, canopy transmittance
errors that occurred early in the day under low potential solar magni-
tude were weighted less than transmittance errors that occurred at
solar noon. A second weighting scheme was applied to xi for all simu-
lated days i to compute the seasonal weighted daily mean canopy
transmittance, xs as

xs ¼
Xn
i¼1

RS↓maxclear;i

RS↓CJ
xi ð4Þ

where RS ↓ maxclear,i is the maximum daily clear-sky solar radiation and
RS ↓ CJ is the annual maximum clear-sky solar radiation (i.e. on 21
June). For example, daily mean canopy transmittance errors occurring
on the date of the winter solstice were thus weighted less than daily
mean errors occurring late in the spring under conditions of high
incoming solar irradiance.

Additionally, the Beer's-type and raytrace estimates of direct beam
canopy transmittance were compared for sample days of 01 March
and 03 May. The two dates, separated by two months, were chosen
as illustrative examples of the variability in solar canopy transmit-
tance patterns for late winter and early spring conditions. Finally,
the two distributed canopy transmittance models were used to
estimate the cumulative solar beam irradiance over the domain for
the 2010 snowmelt season. Above-canopy hourly measurements of
global incoming solar radiation were linearly resampled to five-min
values and empirically disaggregated into the direct and diffuse
components as in Allen et al. (2006). The radiation measurements and
disaggregation are presented in Musselman et al. (2012a, 2012b). The
cumulative direct beam solar irradiance was computed by multiplying
the above-canopy direct beam radiation by the transmittance for the cor-
responding five-minute time step. The cumulative sum was calculated
Table 1
The LiDAR flight metrics and results of the sensitivity analysis of LPI averaged with circular
both flights produced the best agreement with ground-based data and were chosen for ana

Flight Total returns
(million)

Mean surface
returns m−2

Mean vegetation
returns m−2

March 11.52 5.7 5.8
August 14.65 7.9 6.7
Combined 26.16 12.8 13.4
in units of MJ m−2 for the period of 01 March to 21 June 2010, corre-
sponding to the spring snowmelt period.

6. Results and discussion

6.1. LiDAR-derived LPI and LAI′

The combined returns from both LiDAR flights produced the
highest R2 value of 0.64 (Table 1) when linear regressions between
photo-derived LAI′ and LPIcirc produced with varying circular filter
radii were evaluated (Fig. 4a). The improved relationship indicates
that the combined point cloud produced the best agreement with
ground-based LAI′ and therefore may provide a better canopy repre-
sentation than a single flight. The combined canopy returns from
both flights were used in the remaining analysis. The implications
and potential uncertainty resulting from the use of a multi-flight
point cloud are discussed in Section 6.6.

Poor statistical results between photo-derived LAI′ and LPIcirc were
obtained when LPIcirc was computed with very short (e.g. 10 m) and
long (e.g. 60 m) radial lengths. Examples of three linear regressions
between the two metrics are shown for filter radii of 10 m, 35 m,
and 60 m (Fig. 4b–d). Illustrative examples of the LPI maps produced
with these filter radii are provided in Fig. 4e–g. The short lengths
resulted in highly variable LPI values; effectively sampling only the
part of the canopy that would appear at low zenith angles (i.e., directly
overhead) in a hemispherical photo. Conversely, long filter radii
resulted in lower LPI variability by averaging more of the canopy
than would be viewable from a hemispherical photo as a result of
canopy occlusion. The 35 m radius filter produced the highest R2

value (0.64) and lowest p-value (p = 0.01) (Fig. 4) and the resulting
regression was chosen to create an LAI′ proxy from LPI using the com-
bined return product as

LAI0 ¼ −5:059 LPI35mij
þ 4:57 ð5Þ

The resulting LAIij′ from Eq. (5) is provided in Fig. 5. The LPI35m
metric (Fig. 4f) was also used to specify the forest cover fraction for
each grid element (i.e., f cij ¼ 1−LPI35mij

). The statistical relationship
was developed from LAI′ measurements made at 24 locations span-
ning a range of canopy conditions representative of the domain (see
Fig. 1). It is likely that Eq. (5) would not apply to other regions or
forest stands. In addition, the equation predicted negative LAI′ values
when LPI35m > 0.903, which only occurred in the center of the largest
meadow. In these instances, LAI′ was constrained to zero.

6.2. Raytrace estimate of solar direct beam canopy transmittance

On average, an MR parameter value of 42 produced a minimum
mean absolute difference value of 0.14; the average mean absolute
difference increased both below and above this value (Fig. 6). The op-
timal MR parameter indicates that if a ray traverses a linear voxel
space and encounters at least one and fewer than 42 canopy returns,
a fraction of the direct beam will be transmitted and the remaining
fraction will be attenuated (reflection is not considered). If no returns
were accumulated along the ray traverse, the direct beam is assumed
filter radii that obtain the best fit with photo-derived LAI′. The combined returns from
lysis.

Mean LPI Filter radius (m) producing
best fit to photo LAI′

R2 at optimal
filter radius

0.628 ± 0.40 35 0.619
0.606 ± 0.39 35 0.615
0.634 ± 0.39 35 0.639



Fig. 4. (a) The coefficient of determination (R2) of the linear regression between
photo-derived LAI′ and the LiDAR-derived laser penetration index (LPI; one-meter
native resolution) computed with a circular filter centered on the photo location
with filter radii of 5 m to 100 m in five meter increments computed from the March,
August, and combined flight datasets. The markers represent linear regressions with
p-values ≤ 0.01. Examples of the linear regressions between LAI′ (y-axes) and LPI
(x-axes) for LPI computed with filter radii of (b) 10 m, (c) 35 m, and (d) 60 m computed
on data from the combined flights. The LPI maps created with the (e) 10 m, (f) 35 m,
and (g) 60 m filter radii are included beneath the corresponding linear regression
plots. The 24 photo locations used in the regression analysis are indicated.

Fig. 6. The mean absolute difference (y-axis) between solar direct beam canopy trans-
mittance (DBT) derived from hemispherical photos and LiDAR at 12 locations for a
range of maximum return (MR) values (x-axis). The bold line indicates the average
values from the 12 locations. The vertical line indicates the MR value that minimized
the mean absolute difference between the photo- and LiDAR-derived DBT products
when averaged at 12 locations.
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to pass unimpeded. Conversely, 42 or more accumulated returns
correspond to full canopy attenuation of the solar direct beam.

6.3. Point-scale comparison of the raytrace and Beer's-type models

The explicit, photo-derived product (Fig. 7a) illustrates the way
in which distinct canopy elements can impact the solar beam trans-
mittance at a given time and how the transmittance changes with
Fig. 5. LAI′ determined from linear regression between 24 hemispherical photographs
and LiDAR-derived LPI at one meter horizontal grid spacing averaged with a 35 m ra-
dius circular filter centered on each grid element.
seasonal sun angles. The raytrace results in Fig. 7b show a marked
similarity to the explicit photo results. Conversely, the example of
the Beer's-type model (Fig. 7c) highlights the limited information
available when canopy structure is inherently directionally invariant.

Both the photo and LiDAR transmittance products at the location
of Photo #1 indicate a large canopy gap in the south and east that re-
sults in a prolonged period of high transmittance, particularly in the
morning and after 01 April (Fig. 7; note that east is to image left,
consistent with upward hemispherical view geometry when oriented
with north at the image top). The two products also show a cluster of
trees to the south and west that limits beam transmittance after noon
for much of the year. There were also notable differences between the
raytrace and photo estimates. The raytrace estimate exhibits many
more fractional transmittance values than the photo estimate. Also,
the raytrace estimate underestimates the transmittance signature
of the tree cluster to the south and west (afternoon and after ~01
April) (Fig. 7). The greater number of fractional transmittance esti-
mates from the raytrace model is likely a result of the spatial scale
discrepancy between the photo and raytrace methods. For example,
the high pixel resolution of the photos allows the representation of
individual canopy elements (e.g., small branches at close proximity
to the photo) that LiDAR is not able to capture with a 1 m voxel edge
length. The voxel-based raytrace method implicitly includes the
(measured) smaller canopy elements but averages themwithin a larger
volumetric space resulting in the fractional transmittance values.

The left panels of Fig. 8 show quantitatively what is shown graph-
ically in Fig. 7. Both transmittance estimation methods had relatively
lowbut slightly negative normalized daily error at the Photo#1 location
from thewinter solstice to early February (Fig. 7a–b). After 01 February,
the Beer's-type model error increased (i.e. became more negative)
with a value below −0.2 from mid-April to mid-May, after which it
decreased (i.e. became less negative) to ~−0.1 by the summer solstice.
At the same photo location, the raytrace model exhibited very low
normalized error after early February. On average over the year the
normalized absolute error was 0.125 for the Beer's-type model and
0.027 for the raytrace model (Fig. 8b).

When averaged at all 12 photo locations, the daily mean normal-
ized error values were again lowest and similar (absolute error values
of ~0.02) during the winter until early February (Figs. 8c and 7d).
The absolute error values of both products were very similar during
this time. After early-March the Beer's-type error values became
increasingly negative throughout the spring (i.e., underestimated
transmittance); from 01 March to 21 June the mean and standard
deviation of the daily mean absolute error (across the 12 photo
locations) of the Beer's-type and raytrace transmittance estimates
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Fig. 7. Solar direct beam canopy transmittance at a single location (photo #1; Fig. 1) determined from: (a) an upward-looking hemispherical photograph, ray tracing of
LiDAR-derived 3-D canopy structure (b), and (c) the LiDAR-derived Beer's-type method as shown in the right column of Fig. 6.
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were 0.131 ± 0.097 and 0.080 ± 0.055, respectively (Fig. 8d). The re-
sults indicate that the Beer's-type conceptual transmittance model
was unable to resolve complex canopy transmission dynamics partic-
ularly in late winter and early spring when solar elevations are higher
and the sun tracks across a larger sky region. The Beer's-type transmit-
tance errors tended to be strongly biased toward underestimation as
inferred from Fig. 8. Conversely, the raytrace model exhibited little
to no bias throughout the season.

6.4. Distributed comparison of raytrace and Beer's-type model estimates

The distinct differences in the spatial patterns predicted by the
two models (Fig. 9) can be used to inform where and when the Beer's
Law approach is acceptable and the conditions under which the un-
derlying assumptions are not met. In general, the raytrace model cap-
tured a much higher level of spatial detail and marked differences in
magnitude. For example, on 01 March the raytrace model simulated
many areas where the direct beam canopy transmittance values
exceeded 0.6 while the Beer's-type model limited these higher values
to the center of larger forest clearings (yellow, oranges and reds in the
left panels of Fig. 9). These model differences are intuitive as the
raytrace model provided a more explicit measure of how individual
canopy elements impact the direct beam (i.e. directionality) whereas
the Beer's-type estimate inherently considers canopy elements in all
azimuth directions. Thus, areas that have a clear southern sky view
Fig. 8. (a) Daily mean normalized error of solar direct beam canopy transmittance (DBT) e
evaluated against photo-derived DBT at a single photo location (Photo #1); (b) the absolu
(lines) of the daily mean normalized error determined from the bulk (solid line) and ray tr
malized DBT error shown in (c).
but dense canopy to the north (e.g., the north side of canopy gaps)
will not be well represented by the Beer's-type model. The greatest
differences between the raytrace and Beer's-type models for 01
March occurred in and on the north side of canopy gaps (blue color
or underestimation by the Beer's-type model) and in areas that receive
shading from local terrain (pink color or overestimation by the
Beer's-type model) (Fig. 10). It should be noted that the Beer's-type
model itself does not account for terrain shading but would generally
be computed within a radiation sub-module (e.g., Helbig et al., 2009;
Marsh et al., 2012) of a hydrologic model. On average, the model differ-
ences on 01 March were 0.039 ± 0.026, or a 20.7% mean underestima-
tion by the Beer's-type model compared to the raytrace model. This
difference was similar inmagnitude to the Beer's-type errors computed
against photo-derived estimates at the point scale in early March
(Fig. 8d). Despite the distinct differences, on 01 March the two models
did capture similar large-scale spatial patterns in canopy transmittance
resulting from the general orientation of larger forest clearings and
areas of denser stands (as inferred from Fig. 1). The similarities indicate
that the Beer's-typemodel tended to perform acceptably in areaswhere
the canopy is homogeneous and lacked directional variation.

The differences between the two model predictions for 01 March
were enhanced on 03 May when the sun was higher in the sky and
tracked across a greater azimuthal range than in earlyMarch. In general,
the spatial patterns predicted by the Beer's-type model were similar
between 01 March and 03 May and the primary differences were in
stimated from the Beer's-type bulk methods (solid line) and ray tracing (hashed line)
te value of the normalized DBT error shown in (a); (c) the range (shading) and mean
acing LiDAR (dashed line) at 12 photo locations; and (d) the absolute value of the nor-
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Fig. 9.Modeled normalized daily mean solar direct beam canopy transmittance over the full model domain on 01 March (left panels) and 03 May (right panels) estimated from the
Beer's-type (upper panels) and raytrace (lower panels) estimation methods.
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the magnitude of the simulated transmittance (Fig. 9, top panels). In
contrast, the raytrace model simulated very different spatial patterns
and magnitudes of canopy transmittance between March and May
(Fig. 9, bottom panels). The spatial patterns of high and low canopy
transmittance were elongated along an east–west axis in May com-
pared to March (Fig. 9, bottom-right panel). This is likely a result of
the sun rising (setting) in increasingly northeasterly (northwesterly)
directions later in the spring. For example, the sun rose above the hori-
zon on 01 March and 03 May at azimuth angles of 99° and 71°, respec-
tively (reported clockwise from north).

The higher late-spring solar elevation and more northerly azimuth
angles increased the probability of direct beam canopy transmission
in easterly and westerly directions, making the transmittance in
these directions more sensitive to canopy structure than in early
Fig. 10. The difference in normalized solar direct beam canopy transmittance (DBT) estimated
bulk’) for 01 March (left) and 03 May (right).
March. Late-spring shade cast by individual trees at midday is limited
by higher solar elevation angles (69° maximum on 03 May) com-
pared to lower late winter solar elevation angles (46° maximum on
01 March). The higher spring solar elevation angles reduce the sensi-
tivity of canopy transmittance to variations in forest structure to the
south. The Beer's-type model was unable to resolve these seasonal
variations in solar direct beam canopy transmittance. The average
difference between the two models on 03 May was 0.124 ± 0.012,
or a 47.8% underestimation by the Beer's-type model (Fig. 10). Note
that this average value is similar to the 03 May average error value
computed between the Beer's-type estimates and the explicit photo
results at 12 photo locations (Fig. 8). Qualitative analysis of Figs. 8,
9 and 1 indicates that these underestimates tended to be correlated
with areas of high southern sky view (e.g., the north sides of large
with the ray tracing and Beer's-type (i.e. bulk) methods (i.e. ‘difference = ray tracing −
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canopy gaps and meadows) in late winter (i.e., 01 March) and with
areas of high sky view slightly south of zenith (e.g., the north side
of small canopy gaps) and particularly easterly and westerly sky
views in mid-spring (i.e., 03 May).

6.5. Implications for snowmelt modeling

The differences in canopy transmittance predicted by the two
models as observed at the point-scale translated to significant differ-
ences in both the magnitude and spatial patterns of cumulative direct
beam solar irradiance integrated over the 01 March to 21 June 2010
snowmelt period (Fig. 11). Averaged over the 800 m × 700 m do-
main, the Beer's-type model estimated a mean cumulative irradiance
of 428 MJ m−2 while the raytrace model estimated 631 MJ m−2;
a 32% average underestimation by the Beer's-type model. Note that
the raytrace model is not assumed here to represent the ‘truth’. It
should also be noted that the Beer's-type model did not uniformly
underestimate cumulative irradiance. The scatter plot in Fig. 11 indi-
cates that the lowest irradiance values in the domain were higher
for the Beer's-type model than the raytrace model. These model dif-
ferences generally occurred beneath and in close proximity to individ-
ual trees in otherwise open clearings with appreciable sky view. The
results highlight the utility of the raytrace model to explicitly simulate
the shading influence of individual trees whereas the spatial averaging
implicit in the Beer's-type approach lacks this level of detail.

The general patterns of solar beam irradiance integrated over the
snowmelt period have implications on the seasonally dynamic spatial
patterns of snowmelt and soil water availability. The raytrace model
thus provides a level of detail necessary to simulate explicit plot- and
stand-scale spring snow cover patterns that can be evaluated against
ground measurements. Furthermore, the cumulative irradiance from
the solar beam is shown to be important even within the tallest forest
stands (60 m heights) where the cumulative irradiance (01 March -
21 June 2010) predicted by the raytrace model commonly reached
600 MJ m-2 (Fig. 11). This value is the energy equivalent of 167 contin-
uous hours of solar irradiance at 1000 W m-2, or the snowmelt energy
equivalent of 927 mm of melt assuming an average snow albedo of
0.5 and a flat surface; this magnitude of sub-canopy direct beam energy
could not be captured by the Beer's-type model.

6.6. Uncertainty and known sources of error

The combination of a winter and summer point cloud would intro-
duce error if snow were present in the canopy at the time of the
winter flight. A meteorological station in the center of the model
domain recorded daytime maximum temperatures in excess of 7 °C
for a five-day consecutive dry period preceding the 22 March flight
(Musselman et al., 2012a), indicating a low likelihood of snow in the
canopy. The improved relationship with ground-based summer LAI′
Fig. 11. The cumulative sub-canopy direct beam solar irradiance integrated between 01 Mar
transmittance models. Units are in mega-Joules per square meter (MJ m−2). The scatterpl
models. The 1:1 line is shown.
values obtained with the combined point cloud indicated that the
benefit of added canopy structure information from multiple datasets
with different flight paths (Fig. 2) may have outweighed potential
alignment and georeference discrepancies. The methods presented
are equally applicable to data from a single flight.

The photo-derived canopy transmittance estimates were based on
the assumption that the pixel distribution of the exposure accurately
represented the canopy structure. Known uncertainty sources include
georeference errors (Frazer et al., 2000), the RGB light threshold used
to partition the digital image into binary pixel elements (Cescatti,
2007; Jonckheere et al., 2005), nonlinear hemispherical lens distor-
tion (Swaninathan et al., 2003), the solar position algorithm used to
sample the hemispherical sky region corresponding to the sun posi-
tion at a given time (Reda & Andreas, 2004), and height differences
between the camera lens and the reference height used to evaluate
the photo results with measurements or another model. In particular,
biases in canopy gap fraction and LAI′ are known to result from the
image threshold specification by over- or under-representing canopy
coverage (Cescatti, 2007). Conversely, the other error sources men-
tioned above are generally more random in nature when evaluated
over many photo locations and different canopy conditions. In all
cases, care was taken to minimize the uncertainty values from the
various sources (see Musselman et al., 2012b).

The overall significant underestimation of cumulative irradiance
by the Beer's-type model could be explained by potential errors in
the primary model parameter LAI′ or in the parameters of the canopy
shading factor such as the mean measured canopy height and diame-
ter. Underestimation could also be a result of model structural errors
such as the assumption of a spherical leaf distribution specified with-
in the estimate of the canopy extinction coefficient k (Tarboton &
Luce, 1996) (see Appendix A). Improved results could be obtained
by calibrating the Beer's-type model to determine the stand-specific
k value and treating the solar elevation within a cosine approximation
applied to Eq. (A2) as Chen et al. (1997b), but the results would not
improve simulated spatial patterns. More realistic spatial patterns of
the Beer's-type model might be possible by introducing directionality
in the estimation of canopy metrics.

The LiDAR-derived canopy transmittance estimates are based on
the assumption that the pulse returns correctly sample all canopy el-
ements that influence solar beam transmission. Chasmer et al. (2006)
identified a systematic bias of airborne LiDAR returns toward the top
of the canopy with less penetration to a depth where the largest
biomass is typically found. The result of this canopy occlusion would
be an under-representation of canopy structure and a positive bias
in the raytrace transmittance estimate. Using simple trigonometry
and knowledge of the (x, y, z) positions of the sensor and pulse return,
Hagstrom et al. (2010) explicitly identified the number and location of
voxels that went unsampled as a result of pulse occlusion. The authors
advised that data users request that flight position be recorded for
ch and 21 June 2010 as estimated by the Beer's-type (left) and the ray-tracing (center)
ot (right) illustrates the relative per pixel cumulative irradiance predicted by the two
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each pulse. With this information, Hagstrom and Messinger (2011)
was able to quantify uncertainty in the related 3-D voxel model. Sen-
sor platform position was not provided in the 2010 NCALM dataset,
but its utility in uncertainty characterization should be evaluated in
future raytrace studies. The combination of multiple flight datasets
and the use of all pulse returns may have reduced the potential bias
by increasing the sample density of the 3-D canopy space. Further-
more, the sparse nature of the red fir tree distribution (Fig. 1) would
be expected to result in less occlusion of lower canopy elements rela-
tive to a denser forest canopywith fewer gaps. Regardless, occlusion of
lower canopy elements by the upper canopy is likely the primary
source of uncertainty and bias with implications both on the estima-
tion of LPI used to predict LAI′ and the voxel-based raytrace model
used to estimate transmittance.

The secondary source of uncertainty and one that plagues many
studies that attempt to relate ground-based measurements to LiDAR
metrics is spatial co-registration between LiDAR samples and field
measurement locations (Hopkinson & Chasmer, 2009). The horizontal
accuracy of GPS units used to record photo locations was between 1
and 2 m after differential correction. These errors would act to weaken
the regression equations used to estimate LAI′ from LPI (Frazer et al.,
2011; Gobakken & Næsset, 2009; Patterson & Williams, 2003) and in-
crease the errors between point-scale canopy transmittance estimates
from photo and LiDAR.
6.7. Future directions

The topic of airborne LiDAR occlusion requires more work. Partic-
ularly, it is not clear how the presented work will apply to very dense
forest environments characterized by closed canopies where canopy
penetration would be limited. It is possible that such environments
would closer approximate the underlying assumptions of the Beer's-
type models. In general, the assumptions inherent to a Beer's-type
model do not apply in heterogeneous canopy conditions, particularly
at the high spatial resolution offered by LiDAR. At these scales, geo-
metric shading modifications lack physical basis when provided static
canopy metrics (e.g. gap fraction, canopy height, and LAI′) that lack
directionality in azimuth and zenith directions for the estimation
of solar beam canopy transmittance. The results are shown to be
inconsistent with those obtained from ground-based and raytrace
estimates. A parsimonious modification to a Beer's-type model is
warranted. Particularly, improvements to a Beer's-type estimate of
solar beam canopy transmittance may be possible with a dynamic
measurement of canopy height and openness that averages the met-
rics over the general spatial region that influences the solar beam
transmittance. In this way, the canopy structuremetrics would exhibit
temporal and spatial variability that leverages the canopy structure
detail available from LiDAR and results in a more physically based
estimate of solar beam transmittance without the computational
expense of a raytrace model.

The accuracy of snowmelt models is most limited in forested
areas due to a host of challenges related to characterizing the influ-
ence of vegetation structure on sub-canopy mass and energy fluxes
(Rutter et al., 2009). It is shown that a high-resolution raytrace
model can greatly improve spatially explicit characterization of
shortwave forcing compared to a distributed application of a
Beer's-type transmittance model. The results could be used to
improve snowmelt model accuracy, which can lead to improved pre-
dictions of hydrological processes and ecohydrologic response to
vegetation and climate change. In addition, the technique could be
used in studies of forest litter and soil heating (e.g. Baldocchi et al.,
2000) and stream temperature (e.g. Brown & Krygier, 1970;
Johnson & Jones, 2000) to evaluate the partition and exchange of en-
ergy within forest ecosystems and to better understand the associat-
ed spatiotemporal patterns.
7. Conclusions

When compared to point-scale explicit estimates from a single
hemispherical photo location, the raytrace model resolved the
complex seasonal and diurnal variability of solar direct beam cano-
py transmittance resulting from individual trees. The more concep-
tual Beer's-type model could not attain the same level of detail.
The normalized mean absolute error values of the raytrace model
were nearly 50% lower than the Beer's-type model from early
May through 21 June. Unlike the raytrace model, the Beer's-type
model was generally unable to simulate the complex irradiance
patterns associated with individual trees, clustering of trees and
gaps, and the periphery of gaps and large clearings. The Beer's-type
model errors were highest precisely when accurate estimates of ra-
diation are most important for snowmelt (i.e., the spring melt sea-
son). The results confirm known limitations of Beer's-type canopy
transmittance models while highlighting the utility of the raytrace
model to explicitly resolve the influence of heterogeneous canopy
structure on direct beam transmissivity. The Beer's-type model esti-
mated a mean cumulative irradiance over the snowmelt season (i.e.
01 March–21 June) of 428 MJ m−2 while the raytrace model esti-
mated 631 MJ m−2; a 32% average underestimation by the
Beer's-type model. The raytrace model is shown to capture a high
level of variability necessary to simulate explicit plot- and stand-
scale solar irradiance patterns known to govern snowmelt dynamics
and soil water availability. The improved characterization of sub-
canopy solar radiation has implications for understanding the sensi-
tivity of snowmelt timing and magnitude to changes in climate and
land cover.
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Appendix A. Beer's-type model description

Solar radiation beneath the forest canopy RS ↓,subdir is traditionally
estimated with a multiplicative reduction of above-canopy solar radi-
ation RS ↓,dir using an estimate of the forest canopy transmittance, τ.

RS↓;subdir ¼ τRS↓;dir ðA1Þ

The canopy transmittance is commonly estimated with a two-
parameter application of the Beer–Lambert law (Monsi & Saeki,
1953), which assumes an exponential reduction of RS ↓,dir. Hellström
(2000) reported this relationship as:

τi ¼ exp −kLAI 0
� � ðA2Þ

where LAI′ is the effective leaf area index and k is a vegetation-
dependent attenuation coefficient assuming a horizontal leaf angle
distribution (Liston & Elder, 2006). Tarboton and Luce (1996) used a
similar formulation but assumed a spherical leaf angle distribution
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and defined k as a function of the solar zenith angle θ as in Campbell
and Norman (1989),

k ¼ 1
2 cos θð Þ ðA3Þ

Eq. (A3) permits increased (reduced) canopy transmission of solar
radiation when the sun is higher (lower) in the sky and the canopy
path length of the direct solar beam is shorter (longer). Eqs. (A2)
and (A3) treat the canopy as a homogeneous medium. In many
cases, however, canopy gaps can have profound impacts on the mag-
nitude and the spatiotemporal variability of sub-canopy net radiation.
Liston and Elder (2006) accounts for the case that canopy gaps permit
an additive fraction of solar radiation to pass unimpeded to the forest
floor as

τ ¼ τi f c þ 1−f cð Þ ðA4Þ

where fc is the fraction of forest cover (note that Liston and Elder
(2006) presented Eq. (A4) in terms of canopy gap fraction) and τ
on the left hand side is the new transmittance that accounts for
both partial canopy transmission and full gap transmission. Eq. (A4)
effectively assumes that the sun is directly overhead in regard to
the additive contribution of solar transmission through canopy gaps.
Far more often, however, solar zenith angles result in shade being
cast by trees into canopy gaps causing an apparent reduction of the
canopy gap fraction from the perspective of the solar beam
(Gryning et al., 2001). A geometric canopy shading factor fsh was in-
troduced by Gryning et al. (2001) that treats the ground as fully shad-
ed when fsh = 1 and the shade to be directly under the tree canopies
when fsh = fc, which only happens when the sun is at zenith. For con-
sistency, the shade factor of Gryning et al. (2001) is referred to here-
after as the apparent forest cover fraction fac where fc ≤ fac ≤ 1 and
was computed as described below. The reader is referred to Gryning
et al. (2001) for the derivation.

The critical solar elevation angle αc below which the canopy gaps
are fully shaded and fac = 1 was estimated as

tanαc ¼
4h
πd

f c
1−f c

� �
ðA5Þ

where h and d are the average tree height and canopy diameter,
respectively (Gryning et al., 2001). Mean tree height and canopy
diameter within the domain were determined from the LiDAR data.
When the solar elevation angle α exceeded the critical elevation
angle αc, fac was estimated as Gryning et al. (2001) as

f ac ¼ f c 1þ 4h
πd tanα

� �
α≥ αc ðA6Þ

Eq. (A4) was then modified to replace the canopy cover fraction fc
with the apparent canopy cover fraction fac to account for reduced
canopy transmittance resulting from shade cast on ground area that
would otherwise be considered a canopy gap. The solar zenith angle
required in Eq. (A3) was estimated as in Reda and Andreas (2004)
at five-minute time steps for all days between the winter and summer
solstices.

Appendix B. LAI′ from hemispherical photos

Hemispherical photos were used to estimate LAI′ using Miller's
(1967) theorem of canopy gap fraction. The metric gap fraction refers
to the gap frequency (i.e., the likelihood of an infinitesimal beam
penetrating the canopy in a given direction (Ross, 1981)) integrated
over a specified hemispherical sky area (Weiss et al., 2004).

LAI0 ¼ 2 ∫
π=2

0

ln
1

P θð Þ
� 	

cosθ sinθdθ ðB1Þ

In Eq. (B1), P(θ) is the gap fraction at the zenith view angle θ. The
gap fraction at a given zenith angle can be calculated from a hemi-
spherical photo as in Campbell and Norman (1989) as

P θð Þ ¼ exp −G θð ÞLAI0
cosθ

� �
ðB2Þ

where G(θ) is a projection coefficient corresponding to the fraction
of foliage projected on a plane normal to the zenith angle (Chen
et al., 1997a). Using multiple angle measurements of P(θ), G(θ) and
LAI′ were computed simultaneously. Five measurements of P(θ)
were made over the zenith to 75° θ range in 15° increments. The
iterative procedure was used to estimate LAI′ at the locations of the
24 hemispherical photos. The photo-derived LAI′ values were used
in Eqs. (A2) and (A1) to estimate the Beer's-type canopy transmit-
tance at photo locations.
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