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Abstract 

Despite its environmental and scientific significance, predicting gully erosion remains 

problematic. This is especially so in strongly contrasting and degraded regions like the Horn 

of Africa. Machine learning algorithms like Random Forests (RF) offer great potential to deal 

with the complex, often non-linear nature of factors controlling gully erosion. Nonetheless, 

their applicability at regional to continental scales remains largely untested. Moreover, such 

algorithms require large amounts of observations for model training and testing. Collecting 

such data remains an important bottleneck. 

Here we help addressing these gaps by developing and testing a methodology to simulate 

gully densities across Ethiopia, Eritrea and Djibouti (total area: 1.2 million km²). We propose 

a methodology to quickly assess the gully head density (GHD) for representative 1-km² study 

sites by visually scoring the presence of gullies in Google Earth and then converting these 

scores to realistic estimates of GHD. Based on this approach, we compiled GHD observations 

for 1,700 sites. We used these data to train sets of RF regression models that simulate GHD at 

a 1 km² resolution, based on topographic/geomorphic, land cover, soil and rainfall conditions. 

Our approach also accounts for uncertainties on GHD observations. Independent validations 

showed generally acceptable simulations of regional GHD patterns. We further show that: (i) 

model performance strongly depends on the amount of training data used; (ii) large prediction 

errors mainly occur in areas where also the predicted uncertainty is large; and (iii) collecting 

additional training data for these areas results in more drastic model performance 

improvements. Analyses of the feature importance of predictor variables further showed that 

patterns of GHD across the Horn of Africa strongly depend on NDVI and annual rainfall, but 

also the normalized steepness index (ksn) and distance to rivers. Overall, our work opens 

promising perspectives to asses gully densities at continental scales. 

 

Keywords: Gully erosion; Ethiopia; Eritrea; Djibouti; Google Earth; Land Degradation; 
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1. Introduction 

Gully erosion is a major concern in many regions worldwide (e.g. Poesen et al., 2003; 

Valentin et al., 2005). Especially in arid and semi-arid areas, gullies can be a major cause of 

land degradation (Vanmaercke et al., 2011). At the hillslope scale, they often lead to 

important soil losses, direct losses of productive land and reduced biomass production (e.g. 

Avni 2005; Frankl et al., 2016). At the catchment scale, gullies are a dominant sediment 

source and can significantly increase catchment connectivity (de Vente and Poesen, 2005; 

Vanmaercke et al., 2012; de Vente et al., 2008), resulting in negative downstream impacts 

like reduced water quality and reservoir storage capacity losses (Owens et al., 2005; 

Haregeweyn et al., 2005; Vanmaercke et al., 2011). Likewise, gullies can lead to higher flood 

frequencies and magnitudes (e.g. Martineli Costa et al., 2007). 

One region that is heavily affected by these problems is the Horn of Africa and, in particular, 

the northern part of the East-African Rift (i.e. Ethiopia, Eritrea and Djibouti). While this 

region is considered to be one of the “water towers” of Africa (e.g. Hamond, 2013; Zenebe et 

al., 2013), it is also one of the main hotspots in terms of soil erosion (Borrelli et al., 2017; 

Fenta et al., 2020) and catchment sediment export (Vanmaercke et al., 2014). This strongly 

limits the possibility to use available soil and water resources in a sustainable way (e.g. 

Haregeweyn et al., 2005; 2006; Rosa et al., 2020). Increasing land use pressure (e.g. Borrelli 

et al., 2017) and climate change (e.g. Pelletier, 2015; Li and Fang, 2016; Vanmaercke et al., 

2016) are likely to further aggravate these challenges. Coordinated efforts are therefore 

required. Over the past decades, soil and water conservation measures have been 

implemented at a large scale in the Horn of Africa (Nyssen et al., 2004; Hargeweyn et al., 

2015) and significant progress has recently been made in assessing the overall susceptibility 

of this region to sheet and rill erosion (Haregeweyn et al., 2017; Fenta et al., 2020) and 

landsliding (e.g. Broeckx et al., 2018; 2020). However, no such tools exist for assessing gully 

erosion. Current efforts to identify gully erosion hotspots mainly rely on simplified, expert-

based assessments that are based on few observations and generally remain unvalidated (e.g. 

Haregeweyn et al., 2017). 

The inability to assess gully erosion risks over larger areas not only affects the Horn of 

Africa, but relates to a more general and fundamental challenge. Despite considerable 

research attention over the past decades (e.g. Torri and Poesen 2014; Castillo and Gomez, 

2016; Vanmaercke et al. 2016) our ability to simulate gully erosion remains very limited, 

especially at regional to continental scales (e.g. de Vente et al., 2013; Poesen, 2018). Several 

process-oriented models have been proposed (e.g. Poesen et al. 2011; Campo-Bescos et al., 
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2013; Torri et al. 2018; Sidorchuk 2020) but these models typically have very high input data 

requirements and are practically impossible to apply over larger areas (e.g. Merrit et al., 

2003; Poesen et al., 2011; de Vente et al., 2013).  Assessing gully erosion at regional to sub-

continental scales therefore needs to resort to more simplified, empirical approaches. 

However, very few studies have currently attempted to do this (e.g. Poesen, 2018). 

Empirical approaches also come with their own challenges and limitations. Overall, gully 

erosion can be controlled by a wide range of environmental conditions, which may vary both 

locally and at regional scales. These include topographic conditions (e.g. slope and 

contributing area; Torri & Poesen, 2014; Vanmaercke et al., 2016), vegetation characteristics 

(e.g. Zhao et al., 2016; Vannoppen et al., 2015), lithology and soil characteristics (e.g. 

Radoane et al., 1995; Knapen et al., 2007), weather conditions (e.g. Thompson, 1964; Ionita, 

2006; Vanmaercke et al., 2016; Hayas et al. 2017a) and potentially tectonic activity (e.g. 

Menéndez-Duarte et al., 2007; Cox et al., 2010). Assessing gully erosion across large and 

contrasting regions therefore requires tools that account for all pertinent variables. However, 

as other studies indicated (e.g. de Vente et al., 2011; Vanmaercke et al., 2014; Golosov et al., 

2018), classical multiple regression analyses quickly become unsuitable for such purpose. To 

a large extent, this is because such methods generally cannot fully account for the many (of

 ten non-linear) interactions that may exist between variables. More specifically, 

multiple regression typically assumes that relations between dependent and independent 

variables are valid over the whole domain of observations. In reality this is not necessarily so. 

For example, in the case of gully erosion, the topographic conditions leading to gully 

initiation will also depend on local soil and vegetation characteristics and the overall 

geomorphic setting (e.g. Torri and Poesen, 2014; Rossi et al., 2015; Amare et al., 2019). 

Methodological tools are needed that allow identifying and accounting for such complexities. 

Advances in machine learning open promising perspectives in this regard (e.g. Youssef et al., 

2016; Rahmati et al., 2017; Gayen et al., 2019). Random Forests (RF; Breiman, 2001) are a 

commonly applied and often successful approach (e.g. Chen et al., 2017; Hosseinalizadeh et 

al., 2019). Overall, a RF algorithm is based on the construction of an ensemble of decision 

trees that subdivide observations in groups that show maximum similarity within groups and 

dissimilarity between groups at every node in a tree. This is done by creating binary splitting 

rules, based on one predictor variable at every node (e.g. Louppe, 2014). Different decision 

trees are trained based on random subsets of observations. At each node, also random subsets 

of all the potential predictor variables are considered to determine the optimal split. Given the 

variation in observations and predictor variables between the trees, each tree will likely differ 
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and capture different aspects of the dataset. Strong patterns are likely to be captured by many 

trees, while weak patterns will only occur in few trees. By grouping these different trees and 

looking at their majority outcome (in the case RF classification) or their average assigned 

value (in the case of RF regression), one can obtain robust and accurate predictions (e.g. 

Louppe, 2014). A major advantage of RF algorithms is that they can deal well with non-

linearity and inter-correlations between variables. They do not presuppose uniform 

relationships across the variable space, nor that these variables follow a specific distribution. 

Furthermore, the complexity of random forests can be adapted in function of the amount of 

training data available, through the tuning of hyperparameters such as tree depth and the 

number of trees (Breiman, 2001; Louppe, 2014). Given that gully initiation is often a non-

linear, threshold-dependent process, depending on a wide range of interacting factors, RFs 

offer great potential to characterize this complexity.  

Indeed, several studies have already applied RFs to predict the occurrence of gully heads with 

significant success (e.g. Gayen et al., 2019; Rahmati et al., 2017; Arabameri et al., 2018). 

However, nearly all of these studies focused on smaller study areas (i.e. < 1,000 km²). Its 

applicability at regional to sub-continental scales (e.g. 100,000 – 1,000,000 km²) remains 

largely untested. Nonetheless, Jurchescu and Grecu (2015) showed that uncertainties of 

classification and regression trees are clearly higher when applied over larger areas. In 

addition, most studies so far focused on using RF classification to predict the absence or 

presence of gullies at the pixel scale (e.g. Gayen et al., 2019; Rahmati et al., 2017; Arabameri 

et al., 2018). The potential of RF to simulate gully density (GD) in a continuous way remains 

largely unknown. 

Given the nature of the algorithm, the reliability of RF applications can strongly depend on 

the data used to train the model. Robust yet accurate predictions typically require large 

amounts of data in order to avoid overfitting (e.g. Louppe et al., 2014). Likewise, applying a 

RF to data other than it was trained for can result in large uncertainties. As such, RFs face a 

similar constraint as process-based models: simulating the occurrence of gullies at regional to 

continental scales requires large amounts of sufficiently detailed input data. The increasing 

availability of numerous remote sensing products now make it possible to characterize 

relevant environmental factors at such scales (Vanmaercke et al., subm.). Nevertheless, 

accurate inventories of mapped gullies, required for model training and validation, remain 

difficult and labour-intensive to construct, especially in the Global South (e.g. Mararakanye 

et al., 2012; Golosov et al., 2018; Guyassa et al., 2018; Kariminejad et al., 2019; Yibeltal et 
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al., 2019). However, freely available tools like Google Earth open up promising perspectives 

in this regard (e.g. Zhao et al., 2016; Karydas and Panagos, 2020). 

The goal of this paper is therefore twofold. Our direct goal is to develop the first data-driven 

gully density map at a 1 km² resolution for the Horn of Africa (i.e. Ethiopia, Eritrea and 

Djibouti; covering an area of around 1.2 million km²). On a more general and fundamental 

level, we aim to develop and test a methodology that allows assessing gully densities at 

regional to continental scales with a reasonable amount of effort and using freely available 

data sources. To this end we propose a novel gully density mapping procedure, using a 

random sampling strategy of observation sites for which gully densities are estimated in a fast 

and coherent way. These gully density data are then used to train a set of RF regression 

models that simulate spatial patterns of gully density while accounting for observation errors 

on the training data.  

 

2. Materials and methods 

2.1 Gully head density as a proxy for gully occurrence 

Assessing gully densities at regional to continental scales first requires deciding on a measure 

to quantify these densities. Previous studies have mainly mapped gullies as linear features, 

expressing their occurrence as a linear density (e.g. Golosov et al., 2018) or as polygons, 

expressing their density as an areal fraction (e.g. Mararakanye et al., 2012). Such mapping 

efforts are typically very time consuming. Alternatively, Zhao et al. (2016) approximated 

areal gully densities at the catchment scale by assessing which fraction of a set of randomly 

distributed points were located within a gully. While considerably faster, such approach also 

comes with larger uncertainties and an important loss of information. 

In this study we opted for an alternative proxy, i.e. the gully head density (GHD) which is the 

number of gully heads per square kilometre [# km-2]. This measure offers several advantages. 

Practically, mapping gully heads is generally faster and more straightforward than mapping 

gullies as lines or polygons. For example, the distinction between a gully channel and an 

(ephemeral) river is often hard to make, especially in semi-arid environments. Also, from a 

geomorphic perspective, the distinction is largely arbitrary (e.g. Nachtergaele et al., 2002; 

Poesen et al. 2003). Nonetheless, whether or not a channel is mapped as a gully can have a 

large impact on the resulting linear or areal GD. Such interpretation difficulties are largely 

avoided when using GHD as a proxy. Furthermore, although gullies can easily obtain lengths 
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of several hundreds to thousands of meters (e.g. Dube et al., 2020), it are often the local 

conditions at the gully heads that control their formation and evolution (e.g. Torri & Poesen, 

2014). Focussing on gully heads allows for a closer proximity between the studied 

phenomenon and its controlling factors, making empirical analyses more straightforward. 

Finally, while gullies can also widen and deepen, most expansion of gullies typically happens 

through headcut retreat (e.g. Vanmaercke et al., 2016; Hayas et al., 2017b). As such, it can be 

expected that GHD provides a stronger indicator for actual gully erosion risks than areal or 

linear GD.  

Some evidence for this is also provided in Figure 1. For a set of 15 catchments in Ethiopia 

(ranging in size between 0.7 and 975 km²) for which average sediment yield measurements 

(SY) were available (Vanmaercke et al., 2014), we quantified the average gully densities in 

two different ways. First, we estimated the areal fraction of each catchment that is gullied, 

using a sampling procedure in Google Earth as proposed by Zhao et al. (2016). Second, we 

estimated the number of gully heads in each catchment using the same imagery and a similar 

procedure as the one explained below (section 2.2). While both proxies are positively 

correlated to SY, GHD clearly shows a stronger correlation. Both proxies are also inter-

correlated, but only to a limited degree (Figure 1c). Given the limited number of catchments 

and the rather rudimentary nature of this comparison, these findings should evidently be 

interpreted with caution. Nonetheless, it does provide further indication that GHD is a more 

relevant proxy for gully erosion risk (and hence SY) than the areal fraction of gullies. 

 

2.2 An effective strategy to map gully densities at sub-continental scales 

Given their extent and the large number of gullies present, constructing complete databases of 

mapped gully heads at regional to continental scales remains practically unfeasible. 

Nonetheless, simulating gully densities at such scales requires a representative and 

sufficiently detailed training dataset (cf. section 1). We therefore developed a procedure 

where we quantified the GHD for a number of randomly selected observation sites across the 

study region.  

Each observation site consists of a square of 1x1 km², providing a good trade-off between 

level of detail and robustness of the obtained GHD value. It also corresponds to the intended 

resolution of our GHD map. The position of each site was determined randomly with the only 

restrictions that a sufficiently detailed and clear Google Earth image was available and that 
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less than 50% of the area was covered by water. In cases where multiple images were 

available, the most suitable image was selected. This was decided based on the overall 

resolution and sharpness of the image, its colour contrasts and potential shadows. 

Furthermore, an overall preference was given to images taken during periods of low 

vegetation cover. When multiple suitable images were available, we generally used the most 

recent one. When no suitable image was available, the site was not considered. 

 

Figure 2 provides an example of an observation site, demonstrating how GHD was assessed. 

Each site was subdivided into nine cells of equal size (ca. 0.11 km²). By zooming in to a 

mapping height of ca. 500 meters, the presence or absence of gully heads was assessed for 

each of these cells (starting in the NW corner and following the order indicated by the white 

numbers in Figure 2). All mapping was conducted by people with a sufficient training in 

geomorphology and the process of gully erosion. When evaluating whether a cell contained 

gully heads, we took into account the geomorphic context of the features. For example, 

gullies usually form on relatively steep slopes and/or have a significant contributing area. 

Likewise, they tend to follow the steepest slope. Furthermore, gully heads often occur in 

groups or as part of a dendritic gully network (e.g. insets in Figure 2). As a criterion, we 

interpreted a given point as an individual gully head if the gully channel length from that 

point to the outlet or confluence with another channel was at least 10 m and larger than the 

width of the channel.  

Actually mapping or even counting individual gully heads in an observation site remains very 

labour intensive (e.g. De Geeter et al., 2019). We therefore made a crude assessment of the 

overall number of gully heads per site, which is fairly straightforward and much faster. For 

this, we assigned a score to each cell (Figure 2). Cells with no visible gully heads received a 

score of “0”. Cells with 1-5 gully heads received a score of “1”, those with 6-20 gully heads a 

score of “2” and those with >20 gully heads a score of “3”. This approach drastically reduced 

the time required to assess the GHD of an observation site (on average, 1-2 minutes), but also 

induces a loss of information. Nevertheless, for our purposes, having counted and mapped 

each individual gully head would only provide a limited added value, given (i) the resolution 

and size of our intended GHD map; (ii) the stochastic nature of our modelling approach, but 

also the formation of gully heads (e.g. Hayas et al., 2017a); and (iii) the interpretation 

difficulties and errors that would also be associated with mapping individual gully heads (e.g. 

Maugnard et al., 2014). 
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Hence, for each site, we obtained nine scores (Figure 2). Each score was then converted into 

a possible number of gully heads, based on an earlier developed database of 1 km² study sites 

across Africa and Europe (n=2014) for which the individual gully heads were actually 

mapped (e.g. De Geeter et al., 2019).  Each of these mapped sites was subdivided into nine 

cells (of the same dimensions as the cells in this study) and the number of gully heads within 

each cell was counted. From these counts, we derived cumulative probability distributions of 

the number gully heads, corresponding to each score (Figure 3). Using these distributions, we 

assigned a possible number of gully heads to each cell. This was done by randomly sampling 

a number from a uniform distribution between zero and one and selecting, from the 

distribution matching with the cell score, the maximum number of gully heads that had a 

cumulative probability smaller than or equal to that random number. By adding up the 

randomly selected numbers of gully heads for the nine cells, we obtained a realistic estimate 

of the number of gully heads within the observation site. Evidently, for cells with a score of 

‘0’ (e.g. cells 5 and 6 in Figure 2), the assigned number of gully heads was zero. Next, we 

added a random number of gully heads to the observation site’s total. This number was 

sampled randomly from a normal distribution with an average of zero and a standard 

deviation of 1.5 and then rounded to the nearest integer value. For sites where this resulted in 

a negative value, the total gully head count was set to zero. Overall, this additional random 

number allowed to account for mapping uncertainties that are not represented by the 

cumulative gully head distributions (Figure 3). Examples include uncertainties relating to 

whether or not certain features are actually gully heads or the fact that ephemeral gully heads 

may only be visible on some images. Especially for sites with low scores (e.g. all ‘0’ or only 

one ‘1’ score), accounting for these uncertainties can be important.  

For each observation site, this procedure of converting assigned scores to possible numbers of 

gully heads was repeated 100 times. This resulted in a set of 100 possible GHDs for each site. 

In the rest of the text, we will refer to them as the set of ‘possible observations’ of each site 

(reflecting the fact that they are not exact values, but nonetheless based on visual 

observations). We will refer to the average of these 100 possible GHDs as the ‘average 

observed GHD’ for that site. 

  

In total, we assessed the GHD for 1700 sites across the Horn of Africa (Figure 4). The dates 

of the images used to assess GHD ranged between 2001 and 2020. For around 90% of the 

sites, GHD assessments are based on imagery from the period 2010-2020.  
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As the availability of sufficient and representative training and validation data is a key 

concern (cf. section 1), we explored how including more observation sites influenced model 

performance. For this purpose, the compiled database consisted of four subsets. A first 

‘Basic’ subset of 500 sites was used for training a first version of the model. An independent 

‘Validation’ dataset (n=400) was used to test the performance of all trained models. We 

expanded these subsets with two additional subsets: one containing 400 more sites that were 

randomly distributed across the entire study area (cf. ‘Random Extension’; Figure 4) and one 

containing sites that were randomly positioned within key areas (cf. ‘Targeted Extension’). 

These key areas were identified by applying a first version of the random forest model 

(trained with the ‘basic’ set, according to the procedures described in section 2.4) and then 

selecting the zones for which the range in predicted GHDs was larger than 30 heads km-2. 

This targeted extension was constructed to see if training the model with additional data from 

areas where GHD is difficult to predict, leads to stronger increases in model performance. It 

provides a simple example of ‘active learning’, with pool-based sampling and a single 

iteration (Settles, 2009). Overall, such strategy may limit the assessment of GHD for sites 

that would be uninformative to the model. 

 

2.3 Considered predictor variables 

For each observation site, a number of variables were extracted that potentially explain 

differences in GHDs (Table 1). These variables describe the topography and geomorphic 

context, land cover, soil characteristics and climate at each site.  

 

Concerning topography and the geomorphic context, we considered the average and 

maximum slope of the study area, the average elevation and the profile curvature. These four 

variables were originally derived from 90m resolution SRTM data and directly extracted 

from Amatulli et al. (2018) at a 1 km² resolution. We also calculated a normalized steepness 

index (ksn; [m
0.9]), using HYDROSHEDS data (Lehner et al., 2013). Following an approach 

similar to Wobus et al. (2006), we calculated the ksn of each pixel at a 90m resolution as:  

𝑘𝑠𝑛 = 𝑆 × 𝐴𝜃     (Eq. 1) 

With S [m/m] the slope steepness of each pixel, A [m2] the total area draining to the pixel and 

θ the concavity constant. In accordance with many other studies (e.g. DiBiasi & Whipple, 

2011) we set θ to 0.45. For each study site, the median ksn of all pixels was then calculated. 

While ksn is commonly used to quantify the steepness of river profiles, it also provides a 
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topographic proxy of flow shear stress that can occur at any pixel. Furthermore, this equation 

shows clear similarities with proposed equations of slope-area thresholds of gully initiation 

(Torri and Poesen, 2014). As such, it can be expected that high ksn values correspond to 

higher gully occurrence probabilities. Nevertheless, gullies can also result from regressive 

erosion of river systems (e.g. Mendez-Duarte et al., 2007). Furthermore, they frequently 

occur in alluvial deposits as a result of subsurface or saturation excess overland flow (e.g. 

Amare et al., 2019). We therefore also included the average distance of each site to a river as 

a potential predictor variable. These distances were calculated using the HYDROSHEDS 

dataset (Lehner et al., 2013), considering river channels with a Strahler order of 4 or more. 

Regarding land use and land cover, we calculated the long-term (1999-2017) average 

Normalized Difference Vegetation Index (NDVI) for every site. NDVI observations were 

derived from the Copernicus Global land Service (Copernicus Service Information, 2019) at 

their original resolution of 1000m. However, large parts of the study area are characterized by 

large seasonal contrasts in rainfall and vegetation cover (e.g. Nyssen et al., 2005), leading to 

potentially important interactions with soil erosion (e.g. Vanmaercke et al., 2010; Lemma et 

al. 2018). To account for such interactions, we also incorporated a rainfall-weighted version 

of the average NDVI. Using the same data source and time period, we first calculated long-

term average monthly NDVI values. These values were then multiplied by their 

corresponding estimated average monthly rainfall (derived from Huffman et al., 2019) and 

added up. This sum was then divided by the total annual rainfall. Furthermore, we included a 

binary variable (CL), indicating whether the dominant land cover of the site was cropland or 

not (based on Buchhorn et al., 2019). This variable was expected to account for potential 

effects of land use/land management. While various soil and water conservation measures 

(e.g. stone bunds, soil trenches, grassed lynchets) are widely implemented across Ethiopia 

(e.g. Hargeweyn et al., 2015; Taye et al. 2013; 2017), no comprehensive spatial databases of 

these measures exist. However, since they are mainly implemented on cropland, it was 

expected that this variable could provide an indication on the potential effect of conservation 

structures on gully head development (e.g. Monsieurs et al. 2015). 

Soil characteristics were derived from the recently developed SoilGrids database (Hengl et 

al., 2017). We extracted the estimated average soil depth, soil bulk density, volumetric rock 

fragment content as well as the mass percentage of clay, silt and sand. For all characteristics 

(except the average soil depth), we used values estimated at a depth of 5 cm. 

To characterize rainfall conditions, we extracted the estimated (1979-2016) average annual 

rainfall (as derived by Broeckx et al., 2020 based on Beck et al., 2019) as well as two proxies 
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of rainfall intensity: the 99% percentile of daily precipitation for the period 1979-2016 (P99d; 

as derived by Broeckx et al., 2020 based on Beck et al., 2019) and the Rainy Day Normal 

(RDN, i.e. the average rainfall depth on a rainy day). Overall, rainfall intensity is commonly 

recognized as a key factor driving gully erosion (e.g. Poesen et al., 2003; Vanmaercke et al., 

2016; Hayas et al., 2017). 

 

2.4 Predicting gully densities using random forests 

The extracted variables (Table 1) and possible GHD values (cf. section 2.2) were used to 

train random forest regression models that simulate GHD. We implemented our approach 

using ‘RandomForestRegressor’ module of the freely available scikit-learn library 

(Pedregosa et al., 2011; version 0.21.2) through Python version 3.7.3. Prior to training and 

applying our models, we conducted an exploration to identify suitable values for two 

hyperparameters, i.e. the maximum tree depth and number of trees in our random forest. In 

accordance with the bias-variance trade-off (Geurts, 2002), tree depths that are too limited 

will result in poor model performances due to underfitting, while overly complex trees risk 

being overfitted to the training data and may induce significant biases. An analogous 

argument can be made for the number of trees. Hence, we explored optimal values for these 

two hyperparameters by first randomly selecting a set of observation sites (containing 400-

1000 sites that were picked from all subsets, except for the targeted extension; cf. section 2.2 

and Figure 4) and training a RF model with a preselected tree depth and number of trees 

(using the average observed GHD of each site, cf. section 2.2). Next, we applied the model to 

an independent dataset (containing 200-500 sites that were also randomly selected from the 

same subsets but excluding sites already used for training). We then evaluated the model 

performance, based on the Nash-Sutcliffe Model Efficiency (Nash and Sutcliffe, 1970; cf. 

section 2.5) and the total bias in predictions. The latter was calculated as: 

𝐵𝑖𝑎𝑠 =  
∑ 𝑂𝑖

𝑛
𝑖=1 −∑ 𝑃𝑖

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

    (Eq. 2) 

With n the number of observation sites in the validation set, Oi the average observed GHD 

(cf.  section 2.2) and Pi the GHD predicted by the random forest model. Bias-values <-0.1 or 

>0.1 were interpreted as an indication of overfitting or underfitting. We repeated this 

procedure for a range of maximum tree depths (between 2 and 30) and number of trees 

(between 5 and 100). Overall, we found that model performance did not vary strongly, and no 
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significant bias was present for maximum tree depths between 7 and 30. Likewise, as soon as 

more than 20 trees were used, this hyperparameter had little influence on the overall 

performance. Also taking into account computation times, we therefore set the maximum tree 

depth to 15 and the number of trees to 30. 

We trained all further discussed RF regression models with these values, keeping the other 

parameters of the ‘RandomForestRegressor’ function to their default setting. All variables 

listed in Table 1 were consistently included as predictor variables, since they each can be 

expected to make a meaningful contribution to explaining regional variability in GHD. While 

the RF algorithm and predictive performance are largely unaffected by intercorrelations 

between variables, intercorrelation does affect the interpretation of feature importances for 

RF. This is something we will keep in mind later in this paper (cf. section 4.2). To evaluate 

the effect of training data on model performance, we trained four different sets of RF models 

using four different training datasets (cf. Figure 4): (i) the basic set (n=500), (ii) the basic set 

plus the random extension (n=900), (iii) the basic set plus the targeted extension (n=900), and 

(iv) the basic, the random extension and the targeted extension sets (n=1300). 

As explained in section 2.2, the exact GHD values are unknown but a set of 100 possible 

observations was generated for each site. Hence, also the training of the RF model was 

repeated a hundred times for a specific training set, each time using an alternative set of 

possible observations. This resulted in 100 alternative RF models. Each of these was then 

applied to the validation set (n=400, cf. Figure 4) and the set of predicted GHDs was 

compared with the corresponding set of possible GHD observations to assess model 

performance. Details of the model evaluation are discussed in section 2.5.  

Likewise, each RF model was applied to the GIS layers of considered variables (Table 1), 

resulting in 100 alternative predicted GHD maps at a 1 km² resolution. From these, we 

calculated an average GHD map, as well as a map with the total prediction range (maximum 

– minimum predicted values). The former was expected to provide the best estimate of the 

GHD for that specific training dataset. The latter provided an indication of the overall 

uncertainty on the predictions, resulting from uncertainties on the GHD observations. As 

mentioned in section 2.2, the prediction range map of the RF models trained with only the 

‘Basic’ set was also used to generate the targeted subset (cf. Figure 4).  
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2.5 Assessing the model performance 

Different statistics were used to evaluate the performance of the different RF models, 

including the Nash-Suthcliffe Model Efficiency (ME; Nash and Sutcliffe, 1970): 

𝑀𝐸 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

     (Eq. 3) 

with n the number of observation sites in the validation dataset, Oi the possible observed 

GHD of a site, Pi the corresponding predicted GHD and Omean the average of all Oi-values. 

ME can range between -∞ and 1 and indicates the proportion of observed variance that the 

model accounts for. A perfect model accounting for all variance has a ME of 1. Negative ME 

values indicate that the model induces more variance than is initially present in the 

observations.  

While ME is commonly used to evaluate models in geomorphic research (e.g. de Vente et al., 

2013; Campforts et al., 2019), it is also highly sensitive to outliers. As complementary 

measures, we therefore also calculated the overall Bias (cf. Eq. 2, section 2.4) as well as the 

fraction of sites for which the predicted GHD deviated less than five gully heads from its 

corresponding observed value (‘Frac5’). Given that for each of the four different training 

dataset, 100 alternative RF models were trained (cf. section 2.4), ME, Bias and Frac5 were 

calculated for each of these models, using the 100 corresponding sets of possible GHD 

observations in the validation dataset. For each of these measures, we then calculated the 

average and 95% range.  

To assess the relevance of the considered variables (cf. Table 1), the feature importance was 

calculated through the ‘feature_importances_’ property of the RF regressor (Pedregosa et al., 

2011). As discussed in the introduction, RFs consist of a set of decision trees, which are 

trained by minimizing the impurity of every node through the identification of an optimal 

decision rule. In a RF regression, the impurity measure is variance. Hence, every decision 

rule will minimize the variance of samples at the resulting node. Since more relevant features 

(i.e. potential explanatory variables; cf. Table 1) will tend to be selected earlier in the tree and 

more often, feature importance quantifies the average reduction in variance per feature over 

all nodes and trees, weighted by the probability of a sample reaching that node. As such, it 

indicates the relative importance of a predictor variable within the RF model. Higher values 

imply that the variable is more important within the model and can therefore be considered as 

a stronger predictor. Nonetheless, feature importance provides no information about whether 



 

 
This article is protected by copyright. All rights reserved. 

a variable has a positive or negative effect on predicted GHDs. Depending on the node, this 

effect may also vary.  

 

3. Results  

3.1 Observed gully densities and their characteristics 

The average observed GHDs across the 1700 observation sites (cf. Figure 4) range between 0 

and 525 (Figure 5). While the cumulative frequency distributions are very similar for the 

basic, validation and random extension set, the targeted extension set is characterized by 

typically higher GHDs. Figure 5 also indicates the 95% confidence interval of the observed 

GHDs (calculated as the difference between the 97.5 and the 2.5 quantile of the 100 

generated possible GHD values). These intervals span between 2 and 531 heads, but strongly 

depend on the average density. Observation sites with an average observed GHD of 60 or 

more heads per km² often have larger intervals than those with a lower GHD, which is 

generally linked to the occurrence of cells with a score of ‘3’ (cf. section 2.2).  

 

Figure 6 shows the spatial distribution of the average observed GHDs across the Horn of 

Africa. A majority of sites have a GHD of less than 10 heads km-2 (around 70% for the non-

targeted subsets; cf. Figure 4, 5). Most of the higher GHD values (>50 or even >100 heads 

km-2) occur in the Afar region (NE-Ethiopia) and Eritrea.  

 

3.2 Model performance and predicted gully densities 

Figure 7 summarizes the key statistics of model performances of the RF models, trained with 

different datasets. All statistics were calculated using the independent ‘validation’ set (cf. 

Figure 4). In terms of Model Efficiency (Figure 7a; cf. Eq. 3), the RF models trained only 

with the ‘basic’ set perform poorly. With an average value of 0.02, the variance explained by 

these models is almost negligible. However, expanding the training set with the 400 sites 

from the ‘random extension’ set significantly increases the ME. Adding instead the 400 sites 

of the ‘targeted extension’ resulted in an even larger increase in ME. Models trained with all 

three training datasets (n=1300) clearly showed the highest ME.  
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In terms of Bias (Figure 7b; cf. Eq. 2), models trained with the basic set + the targeted 

extension show a slight yet significant bias. For the other training sets, the bias is clearly 

lower and not significantly different from zero (when considering the 95% range of 

calculated Bias values). The frac5 values lie around 35% and do not vary much between 

training sets (Figure 7c). Only models trained with the basic set + targeted extension tend to 

have a slightly lower Frac5.  

Figure 8 shows the average simulated GHDs across the study area at a 1 km² resolution, 

based on the 100 RF models that were trained with all available training data (i.e. the basic, 

random extension and targeted extension set; cf. Figure 4). Given that these RF models 

showed the overall best model performance (cf. Figure 7); this map can be interpreted as our 

best estimate of GHDs across the Horn of Africa.  

Figure 9 shows the difference between the average simulated GHD and the average observed 

GHD for the 400 validation sites. The background shows the total range in predicted GHDs. 

For 35% of the sites, average predicted GHD values deviate less than 5 heads from their 

corresponding average observed GHD. For 56% of the sites this deviation is less than 10 

heads, while for 71% of the sites this is less than 20 gully heads. For 11% of the sites, the 

difference between average observed and predicted values exceeds 50 heads. For around 4%, 

this difference is larger than 100 gully heads. In agreement with Figure 7b, slightly more sites 

are overpredicted than underpredicted but both cases occur. The majority of sites showing an 

important over- or underprediction are located in areas where also the range in predicted 

values is larger (indicating a larger uncertainty on the predictions). 

Figure 10 shows the average feature importance of the considered potential explaining 

variables (Table 1) as well as their 95% range across the 100 trained RFs. These feature 

importances vary relatively little in relation to the subset of training data used (cf. Figure 4). 

Only the RF models trained with the basic set + targeted extension, show a slightly different 

pattern. Overall, NDVI clearly has the highest feature importance, followed by the annual 

rainfall depth (Pa). For most other variables, feature importance varies typically between 0.03 

and 0.07. Only for CL, the feature importance is close to zero.  

 

In general, feature importances also depend on the overall number of variables considered 

and their intercorrelation. To gain more insight into the role of the different environmental 

factors controlling GHD across the Horn of Africa, Figure 11 shows the average feature 
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importance, stacked according to the overall environmental factor to which they mainly relate 

(cf. Table 1). This figure indicates that variables describing the topographic and geomorphic 

context as well as variables describing soil characteristics are most important in explaining 

spatial variations in GHD (each having a combined feature importance of around 30%). 

Variables relating to land cover/land use have a combined feature importance of around 22%. 

Of these variables, NDVI is clearly the most important one. Variables relating to rainfall 

characteristics have a combined feature importance of about 19%, with variables relating to 

rainfall intensity (i.e. RDN and P99d) being clearly less important than annual rainfall. 

 

4. Discussion 

4.1 Model performance and reliability 

Overall, our validation results (Figure 7) show that model performances strongly depend on 

the amount of data used to train the model. For RF models trained with only 500 observation 

sites, the variance explained by the model was close to zero. However, models trained with 

larger datasets yielded significantly higher ME-values (Figure 7a). Differences in Bias 

(Figure 7b) and Frac5 (Figure 7c) are relatively smaller when different training sets are 

considered. This indicates that the gains in ME when using larger training datasets are mainly 

attributable to less severe over- or underestimations in a limited number of sites. 

When using the maximum amount of available training data, the trained random forests have 

a ME of around 20% (Figure 7a). While this may seem low at first sight, it is interesting to 

put this figure into perspective.  First and foremost, there are (to our knowledge) no studies 

yet that have aimed to predict GD at regional to continental scales and allow for a direct 

comparison. Several studies have attempted to predict other geomorphic processes at such 

scales, including sheet and rill erosion and catchment sediment yields. However, they 

generally provide no direct quantitative validation with an independent validation dataset 

(e.g. de Vente et al., 2013; Vanmaercke et al., 2014; Borrelli et al., 2017; Fenta et al., 2020). 

As compared to studies that do provide an independent validation, our model results are 

similar to (and in several cases even better than) studies aiming to predict spatial patterns of 

catchment sediment yields (in Ethiopia and elsewhere, cf. de Vente et al., 2013). This is 

especially so, when taking into account that ME (cf. Eq. 3) was calculated based on absolute 

rather than log-transformed values. 
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Nevertheless, several studies did predict gully occurrence over smaller areas and reported 

statistics on model performances. These results remain difficult to compare as they are based 

on aggregated gully densities for larger catchments (e.g. Zhao et al., 2016) or only consider 

the presence or absence of gullies at the pixel level and are based on much smaller validation 

datasets (e.g. Pourghasemi et al., 2017; Rahmati et al., 2017;  Arabameri et al., 2019; 

Hosseinalizadeh et al., 2019). Nonetheless, they do suggest overall better model performance. 

To a large extent, this may be attributable to the smaller range in potential factors that may 

influence gully erosion. In contexts where climatic condition, soil characteristics and/or land 

use systems vary much less, it might be feasible to predict the occurrence of gullies more 

precisely; especially since the controlling factors of gully initiation may show important 

interactions (e.g. Torri & Poesen, 2014; Rossi et al., 2015). For example, when focusing on a 

specific gullied catchment, it might be possible to predict fairly accurately where gullies may 

occur, based on the topography and land use conditions (e.g. Rahmati et al., 2017; 

Hosseinalizadeh et al., 2019). At regional scale, however, areas with a similar topography and 

land use, may be unaffected by gullies due to their different climatic conditions, soil 

characteristics or geomorphic/tectonic context. As our results indicate (e.g. Figure 10 & 11), 

variables that relate to these more regional factors, tend to have a large importance within the 

trained RFs, making accurate predictions at the level of individual sites potentially harder.  

While the performance statistics indicate that our RFs are not very good at accurately 

predicting the GHD of individual sites (Figure 7), our model is clearly capable of simulating 

the regional patterns of GHD across the Horn of Africa in a robust and reliable way (with 71 

percent of the sites having a predicted average GHD that deviated less than 20 heads from the 

average observed value; Figure 9). Also a visual comparison between the mapped (Figure 6) 

and simulated gully density (Figure 8) shows that the model is generally capable of 

reproducing the main gully density hotspots of the Horn of Africa. However, within these 

susceptible areas, GHD can vary greatly between individual sites. As Figure 9 indicates, it is 

mainly in these areas that significant prediction errors occur. Interestingly, also the range in 

predicted values at pixel level (based on the 100 alternative RF models) is large in these areas 

(Figure 9). This suggests that our modelling approach not only results in acceptable 

predictive accuracies, but can also correctly indicate where the uncertainty on predictions is 

higher. As our validation results based on different subsets demonstrate (Figure 7), this can 

guide future sampling for further model improvement.  
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Overall, we deem our map useful for large scale assessments (e.g. comparing gully densities 

at the catchment scale). Nevertheless, predicted GHD at the pixel/site level can be subject to 

large uncertainties and should be interpreted with caution.  

 

4.2 Gully densities across the Horn of Africa: a geomorphic interpretation 

According to our simulations (Figure 8), potential hotspots of gully erosion mainly occur in 

Eritrea, the Northern Ethiopian highlands (including Tigray and Amhara), parts of Somali 

State and the Afar Triangle. To a significant extent, these patterns correspond to predicted 

patterns of sheet and rill erosion (Fenta et al., 2020). This is to be expected, since the main 

factors driving sheet & rill erosion (i.e. significant topography, poor vegetation cover, 

erodible soils and erosive rainfall events; e.g. Fenta et al., 2020; Borrelli et al., 2017) can also 

lead to gully development (e.g. Torri & Poesen, 2014; Vanmaercke et al., 2016). Nonetheless, 

there are also significant differences. For example, while our simulations (Figure 8) and 

mapping efforts (Figure 7) indicate high gully densities in the Afar region, sheet and rill 

erosion rates are predicted to be relatively low in this area (Fenta et al., 2020). Given the low 

rainfall amounts in this region (and the associated lack of cultivation), careful interpretation is 

needed here. Gully heads that formed during an extreme rainfall event are likely preserved in 

the landscape for many years or even centuries. This may result in a potential observation 

bias, with the higher GHD being the result of a longer ‘representative time period’. A similar 

issue was reported with respect to the occurrence of landslides and rockfalls (Broeckx et al., 

2018; Broeckx et al., 2020), where observed landslides in arid regions are most likely relicts 

that are no longer attributable to current environmental conditions. Furthermore, while (semi-

)arid regions are often characterized by high gully densities (e.g. Poesen et al., 2003; 

Vanmaercke et al., 2011; Castillo & Gomez, 2016), the highest gully headcut retreat rates are 

typically observed in more tropical and humid environments (Vanmaercke et al., 2016). As 

such, a high GHD does not necessarily imply that actual gully erosion rates are high.  

Apart from the Afar region, there also appear to be more subtle differences between predicted 

hotspots of sheet and rill erosion (Fenta et al., 2020) and hotspots of GHD (Figure 8). While 

this is outside the scope of this paper, it would be interesting to further explore these 

differences and their relative importance in explaining spatial patterns of catchment sediment 

yield.  
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Overall, the nature of the applied RF approach does not allow directly characterizing the 

importance of different environmental factors. This because explanatory variables may have a 

different role, depending on the value of other variables. However, herein probably also lies 

the strength of this method, given that gully erosion is typically a threshold-dependent and 

non-linear process that can depend on a specific combination of local and regional 

environmental and geomorphic variables (e.g. Torri & Poesen, 2014; Castillo and Gomez, 

2016; Vanmaercke et al., 2016). Nevertheless, the derived feature importance of our RF 

models does provide some highly interesting and relevant insights (cf. Figure 10 & 11). 

In general, variables describing the topographic and geomorphic setting of study sites (Table 

1) play an important role in the RF models. Surprisingly, the slope steepness of study sites 

has a relatively lower importance as compared to other factors. For example, the feature 

importance of the calculated median ksn values is about 50% higher than for the average or 

maximum slope steepness (Figure 11). As ksn integrates the effect of both slope steepness and 

contributing area (cf. Eq. 1), it likely provides a better proxy for the topographic conditions 

leading to gully initiation (Torri and Poesen, 2014). The relatively high importance of profile 

curvature provides a further indication for this (Figure 11). This indicates that ksn can provide 

a geomorphically meaningful and statistically powerful tool to characterize topographic 

contexts of gully initiation, even in situations where the exact position of gully heads (and, by 

extent, their specific combination of slope steepness and contributing area) are unknown. At a 

more fundamental level, the feature importance of ksn suggest that fluvial processes not only 

control the pace of landscape evolution over geological timescales (e.g. Campforts et al., 

2015) but also control the intensity of current hillslope processes. Next to ksn, also the 

average distance to rivers has a relatively high feature importance (Figure 10; 11). Also this 

corresponds to our geomorphic understanding that gullies often form in alluvial areas as a 

result of saturation excess and subsurface flow (e.g. Amare et al., 2019),  due to regressive 

erosion of river knickpoints (e.g. Mendez-Duarte et al., 2007) or due to regressive erosion 

starting as bank gullies at steep river channel banks (Oostwoud Wijdenes et al., 2000) . It also 

further demonstrates that, despite similarities, the formation of gullies may be driven by 

clearly different mechanisms and factors than sheet and rill erosion. 

Variables relating to land cover are likewise very significant, with NDVI being the variable 

with clearly the highest feature importance across all simulations and training sets (Figure 10, 

11). This is in line with our general understanding that decreases in vegetation cover can lead 

to gully formation (e.g. Torri and Poesen, 2014; Zhao et al., 2016), but also points towards 
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the sensitivity of gully erosion to environmental change. Somewhat surprisingly, the rainfall-

weighted version of average NDVI did not perform better. This may be due to errors and 

uncertainties associated with the proxy or because this proxy does not correctly capture the 

interactions between rainfall, vegetation cover and erosion. For example, in the semi-arid 

northern Ethiopian Highlands, the most intense erosion events typically occur at the start of 

the rainy season when vegetation cover is still low (e.g. Vanmaercke et al., 2010). However, 

other studies in more humid areas have reported intense alluvial gully erosion at the end of 

the rainy season, when the vegetation cover is high but soils are also more saturated (e.g. 

Amare et al., 2019). Similarly, the variable indicating whether a site was predominantly 

cultivated showed no importance (Figure 10). It was hypothesized that this distinction may be 

relevant since cropland in the study area is also more frequently treated with soil and water 

conservation measures (cf. section 2.3; e.g. Hargeweyn et al., 2015), resulting in often 

relatively lower soil erosion rates as compared to rangeland (e.g. Taye et al., 2015; Maetens 

et al., 2012a; 2012b). Nevertheless, soil cultivation and especially tillage as well as the 

creation of drainage ditches on cropland, can also significantly increase the occurrence of 

gullies (Monsieurs et al., 2016). Most likely, the considered CL variable is too crude as a 

proxy to accurately reflect such different land management effects. 

Also soil characteristics are clearly important in the generated RF models (Figure 10, 11). 

Nonetheless, especially here, these results are difficult to interpret. Overall, subtle differences 

in feature importances also depend on the training dataset used as well as inter-correlations 

with other variables, impeding a full understanding. Moreover, soil characteristics can play 

different and sometimes contrasting roles in the formation of gullies. They can greatly 

influence runoff coefficients and by extent the runoff volumes that may be accumulated at a 

potential gully head. In this regard, high soil bulk densities, high clay and rock fragments and 

limited soil depths may favour the formation of gullies. On the other hand, the actual 

formation of gully heads can also strongly depend on the overall soil cohesion and erodibility 

(Knapen et al., 2007). As such, also deep and  less cohesive soils (containing high 

percentages of sand or silt and having a low rock fragment cover) may be more susceptible to 

gully erosion. In addition, also the soil characteristics considered here were derived from 

machine learning approaches and may be subject to important uncertainties (Table 1; Hengl 

et al., 2017). This further makes the interpretation of these results complex. Here we also 

used properties estimated for the top soil. Nonetheless, gully erosion can also be controlled 

by soil properties at larger depths. 
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Finally, also the variables relating to rainfall characteristics are of significant importance 

(Figure 10, 11). Annual rainfall appears to be the most relevant variable. Given that both 

gully head initiation (e.g. Hayas et al., 2017) and headcut retreat (e.g. Vanmaercke et al., 

2016) are mainly controlled by rainfall intensity, the relatively lower importance of RDN and 

P99d is somewhat surprising. As with soil characteristics and other environmental factors, the 

obtained feature importances also depend on the other variables considered. For example, the 

feature importance of either RDN or P99d would be higher if only one of the two was 

considered. Furthermore, the greater importance of annual rainfall may be attributable to its 

close link to vegetation cover as well as to the potential ‘inheritance’ effect of gullies in arid 

environments, discussed above. More research may further constrain and clarify the role of 

climatic variables. Nonetheless, the dominant importance of NDVI and annual rainfall in 

explaining GHD (Figure 11) further points to the potentially large sensitivity of gully erosion 

to climate change in the Horn of Africa (e.g. Vanmaercke et al., 2016). 

 

4.3 Towards gully erosion assessments at larger scales 

Despite significant uncertainties at the level of individual sites, this work clearly indicates 

that it is feasible to simulate gully densities at regional to continental scales with accuracies 

that are generally comparable to those of other geomorphic processes (e.g. de Vente et al., 

2013). While earlier studies already demonstrated the potential of RFs and other machine 

learning techniques to predict gully occurrence at local scales (e.g. Rahmati et al., 2017; 

Arabameri et al., 2018; Hosseinalizadeh et al., 2019), their applicability at larger scales 

remained largely untested. This is likely attributable to the lack of sufficient representative 

training and testing data. As such, our developed random sampling procedure opens 

promising perspectives to assess gully densities at regional, continental and even global 

scales. Here we discuss some scopes for further improvement in this regard. 

An important compromise of our semi-quantitative mapping method is that the estimated 

GHDs are also subject to important uncertainties (Figure 5). These errors propagate in the RF 

models. Better results might therefore be obtained by further refining the scoring approach, 

e.g. by increasing the number of cells per site (cf. Figure 2) and/or limiting the possible range 

of gully heads that correspond to a specific score (cf. Figure 3). Nevertheless, we expect that 

the potential gain of such refinements will be limited. First, even when gully heads are 

exactly counted, these quantifications will remain subject to mapping and interpretation 
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errors (e.g. Maugnard et al., 2014). Second, these uncertainties on the observations are clearly 

much smaller than the uncertainties on the simulations.  For example, for the validation set 

(Figure 4), correlating two sets of the 100 generated possible GHD values typically resulted 

in an r²-value of around 0.85. Correlating these possible observations with their 

corresponding predicted GHD values typically resulted in an r²-value of around 0.20 (cf. 

Figure 7a). As such, the majority of the unexplained variance is attributable to modelling 

errors rather than observation errors (e.g. Van Rompaey et al., 2001). Over larger areas, the 

relative importance of observation errors will likely further decrease. This because, across 

more contrasting environments with larger ranges in GHD, the signal-to-noise ratio of 

observed gully densities should increase. 

Further reducing observation errors by using more accurate assessment procedures would 

also require significantly more time and, hence, a lower number of sites that could be mapped 

with the same amount of effort. The latter is important to consider as visually assessing gully 

densities over larger areas can be highly labour intensive, even when using a semi-

quantitative approach as proposed here. On the other hand, our results clearly show that more 

training data results in better predictions (Figure 7). While practical constraints forced us to 

limit the training dataset to 1300 sites, it is likely that further increasing the number of sites 

would further enhance model performance. In this regard, targeting additional mapping 

efforts in areas where first model results were uncertain clearly resulted in larger gains in 

model performance (Figure 7a). However, targeting the sampling efforts too much also 

involves the risks of introducing biases (Figure 7b). We therefore recommend to further 

explore how the size of the training datasets influences model performances, as well as to 

further optimize sampling procedures.  

Also expanding and fine-tuning the list of potential explanatory variables might lead to 

further increases in predictive accuracies. We therefore recommend exploring and test other 

variables that may help characterizing patterns of gully densities at regional to continental 

scales but that are preferably also straightforward in their interpretation. Examples include 

variables that: (i) better describe the implementation of soil and water conservation practices 

as well as other relevant land use practices (e.g. tillage); (ii) better capture the role of 

vegetation dynamics on gully erosion; (iii) characterize the spatial patterns of vegetation/land 

cover within study sites (as also this may greatly influence the formation of gullies; e.g. Rossi 

et al., 2015); (iv) allow to better distinguish the effects of soil properties on runoff 
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production, erodibility and subsurface flow; and (v) describe the potential effect of tectonics 

and/or base level changes as well as the overall geology/lithology. 

Evidently, increasing the list of potential variables also involves the risk of overfitting or 

preventing the algorithm of finding an optimal solution. In this study, the potential predictor 

variables were incorporated without prior analysis and hyperparameters were arbitrarily set to 

values for which earlier explorations indicated that they would not induce significant biases 

or overfitting. A third way of improving model performances might therefore lie in further 

investigating how adapting these and other details of the RF algorithm affects model 

performances. In this regard, it might also be worthwhile to further explore other machine 

learning approaches (e.g. Rahmati et al., 2017; Hosseinalizadeh et al., 2019). 

 

5. Conclusions 

Accurate simulations and quantifications of gully erosion at regional to continental scales 

remain a key challenge. This is especially so since gully erosion often depends on a complex 

combination of interacting environmental factors. Earlier work indicated that machine 

learning approaches like random forests offer great potential in this regard. However, so far, 

they have only been tested at local scales. A main constraint for their application at larger 

scales is large data demands required for training and testing these models. 

Here we developed and tested a methodological framework to simulate gully densities across 

a 1.2 million km² study area in the Horn of Africa, using openly available data and tools and 

requiring a feasible amount of training data. The main innovations of this approach are: (i) 

using the number of gully heads rather than gully length or the areal extent as a proxy for 

gully density; (ii) quantifying these gully heads with a semi-quantitative scoring approach; 

(iii) sampling gully densities across a large number of small but representative sites, using a 

combination of random and targeted sampling; and (iv) applying multiple random forests 

models, trained with alternative sets of observations in order to account for observation 

uncertainties and their effect on simulated patterns of gully density. 

This approach resulted in the first gully density map for Ethiopia, Eritrea and Djibouti 

(Figure 8). While uncertainties at the level of individual sites can be large, our approach 

clearly succeeded in robustly simulating regional variations of gully density. Moreover, our 

approach also allowed identifying areas where prediction errors can be expected to be larger 
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(Figure 9). Interpretation of the feature importances (Figure 10, 11) further revealed 

similarities but also important differences with expected patterns of sheet and rill erosion. As 

such, our results open promising perspectives to better assess the relative importance of 

gullies to total erosion rates and catchment sediment yields. 

In general, we demonstrated that it is feasible to simulate patterns of gully densities at 

regional, continental or even global scales, using a limited yet representative datasets of 

mapped gully densities. As discussed in section 4.3, model performances can be expected to 

further increase by increasing the amount of training data and improving site selection 

procedures (e.g. through targeted sampling  strategies), considering more or better potential 

explanatory variables and/or fine-tuning the training procedure. 
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Figure 1: Comparison of observed catchment sediment yields (SY) and different proxies of 

gully density for 15 catchments in Ethiopia. SY data were derived from Vanmaercke et al. 

(2014). (a) SY versus areal gully density. (b) SY versus gully head density. (c) Gully head 

density versus areal gully density. 
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Figure 2: Example of a randomly selected observation site in Ethiopia (7.028368°N, 

41.94738°E, image date: 05/02/2012). The red square indicates the boundaries of the 1-km² 

site. The white lines demarcate the boundaries of the nine cells that subdivided each site. The 

white numbers in the top right corners show the order in which the gully head density of each 

cell was assessed. The large numbers in the center of each cell indicate the score that was 

assigned to each cell (where: 0 = no gully heads, 1 = 1-5 gully heads, 2 = 6-20 gully heads, 

and 3 = >20 gully heads). Insets A and B provide some close-ups of the observation site with 

visible gully heads marked with a red dot.  
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Figure 3: Cumulative probabilities of the number of gully heads that can be expected in a 

cell with the indicated score. These distributions were derived from an earlier developed 

database of 1 km² study sites across Africa and Europe for which all gully heads were 

manually mapped in Google Earth (e.g. De Geeter et al., 2019). ‘n’ indicates the number of 

cells that were used to calculate the cumulative distributions. 

  



 

 
This article is protected by copyright. All rights reserved. 

 
 

Figure 4: Overview of observation sites in the Horn of Africa with possible observations on 

the gully head density available. Each dot corresponds to a 1 km² observation site (total n = 

1700). These sites were subdivided into different subsets for model training and validation 

(see text for details). 
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Figure 5: Cumulative frequency distributions of the observed gully head density (GHD) 

across different sites for the different datasets indicated in Figure 4. Coloured curves show 

the average observed GHD (cf. section 2.2). The grey areas indicate the 95% confidence 

limit on these observations (calculated as the difference between the 97.5 and 2.5 quantile of 

the possible observed GHD values).  
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Figure 6: Spatial distribution of the average observed gully head densities (GHD) of all 

observation sites (cf. section 2.2). 
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Figure 7: Model performance statistics for random forest models trained with different 

subsets of data, applied to the independent validation dataset (cf. Figure 4). Bars indicate the 

average performance for 100 random forest models, trained with 100 different sets of 

possible observations. Error bars indicate the 95% range. (a) Nash-Sutcliffe Model 

Efficiency (cf. Eq. 3). (b) Estimated bias in the total number of gully heads (cf. Eq. 2). (c) 

Fraction of sites for which the simulated gully head density deviates less than five heads from 

the corresponding possible observed density. 
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Figure 8: Simulated gully head densities (GHD) for Ethiopia, Eritrea and Djibouti based on 

the average of 100 random forest models (trained with the basic, random extension and 

targeted extension subsets of observation sites; cf. Figure 4). 
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Figure 9: Difference between the average simulated and average observed gully head density 

(GHD) for the 400 observation sites of the validation set (cf. Figure 4), based on the same 

100 random forest models used to generate Figure 8. For 71% of the sites, this deviation is 

less than 20 gully heads (GH). For 11%, the deviation is larger than 50 gully heads. The 

background layer indicates the total range in predicted GHD values, a proxy for predictive 

uncertainty. 
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Figure 10: Feature importance of the considered explanatory variables (see Table 1 for 

details and an explanation of the abbreviations), grouped according to the four subsets of 

sites used for training the model (cf. Figure 4). Bar heights indicate the average feature 

importance, based on the 100 trained random forest models. Error bars indicate the 

corresponding 95% variability range. 
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Figure 11: Average feature importance of the considered explanatory variables (see Table 1 

for details and an explanation of the abbreviations), for the random forest models trained 

with all available training data (i.e. basic set + random extension + targeted extension; cf. 

Figure 4). Variables are stacked according to the overall environmental factor they 

characterize (cf. Table 1). 
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Table 1: Overview of the considered variables potentially explaining the variability in 

estimated gully head densities between observation sites. The column ‘overall range’ 

indicates the minimum and maximum value of the variable across all observation sites (n = 

1700, cf. Figure 4). 

Factor Variable Description Units 

Original 

resolution 

Overall 

Range Source 

Topography 

& 

geomorphic 

context 

Elev Average elevation 

of the observation 

site 

m 1000m -121 - 

4291 

Amatulli et 

al. (2018) 

Smn Mean slope 

steepness of the 

observation site 

° 1000m 0.29 - 

35.15 

Amatulli et 

al. (2018) 

Smax Maximum slope 

steepness of the 

observation site 

° 1000m 0.70 - 

59.35 

Amatulli et 

al. (2018) 

CurvP Average profile 

curvature of the 

observation site 

rad m-1 1000m -

0.00094 

- 

0.00104 

Amatulli et 

al. (2018) 

ksn Median normalized 

steepness index of 

the observation site 

(cf. Eq. 1)  

m0.9 90m 0.45 - 

97.95 

Lehner et al. 

(2013); own 

processing 

DistRiv Average distance of 

the observation site 

to a stream with 

Strahler order ≥ 4 

m 500m 171 - 

67532 

Lehner et al. 

(2013); own 

processing 

Land 

cover/land 

use 

NDVI Long-term (1999-

2017) average 

NDVI of the 

observation site 

none 1000m 0.009 - 

0.936 

Copernicus 

Service 

Information 

(2019) 

NDVIrw Average NDVI 

(1999-2017) of the 

observation sites, 

weighted according 

to monthly rainfall 

none 1000m 0.009 - 

0.936 

Copernicus 

Service 

Information 

(2019); 

Huffman et 

al. (2019); 

own 

processing  

CL Boolean variable, 

indicating if the 

observation site is 

dominated by 

cropland or not 

none 100m 0 - 1 Buchhorn et 

al. (2019) 

Soil 

characteristics 

CLAY Average mass 

percentage of clay 

in the topsoil 

% 250m 3.9 - 

100 

Hengl et al. 

(2017) 

SILT Average mass 

percentage of clay 

in the topsoil 

% 250m 3.9 - 

100 

Hengl et al. 

(2017) 
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SAND Average mass 

percentage of sand 

in the topsoil  

% 250m 6.7 - 

100 

Hengl et al. 

(2017) 

SBD Average soil bulk 

density 

kg/m3 250m 880 - 

1549 

Hengl et al. 

(2017) 

CF Average volumetric 

coarse fragment 

content  

% 250m 0 - 100 Hengl et al. 

(2017) 

SD Average soil depth cm 250m 505 - 

18612 

Hengl et al. 

(2017) 

Rainfall 

characteristics 

Pa Average annual 

rainfall (1979-2016) 

mm y-1 0.1° 42 - 

1844 

Beck et al. 

(2019); 

Broeckx et 

al. (2020) 

P99d 99% percentile of 

the daily 

precipitation in the 

period 1979-2016 

mm day-

1 

0.1° 2 - 53 Beck et al. 

(2019); 

Broeckx et 

al. (2020) 

RDN Rainy day normal, 

i.e. average annual 

precipitation 

divided by the 

average number of 

rainy days (for the 

period 1961-1990) 

mm 

rainy 

day-1 

10' 4.22 - 

19.60 

New et al. 

(2002); 

Vanmaercke 

et al. (2016) 
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