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[1] We estimate the spatial distribution of daily melt-season snow water equivalent (SWE)
over the Sierra Nevada for March to August, 2000–2012, by two methods: reconstruction
by combining remotely sensed snow cover images with a spatially distributed snowmelt
model and a blended method in which the reconstruction is combined with in situ snow
sensor observations. We validate the methods with 17 snow surveys at six locations with
spatial sampling and with the operational snow sensor network. We also compare the
methods with NOAA’s operational Snow Data Assimilation System (SNODAS). Mean
biases of the methods compared to the snow surveys are �0.193 m (reconstruction), 0.001
m (blended), and �0.181 m (SNODAS). Corresponding root-mean-square errors are 0.252,
0.205, and 0.254 m. Comparison between blended and snow sensor SWE suggests that the
current sensor network inadequately represents SWE in the Sierra Nevada because of the
low spatial density of sensors in the lower/higher elevations. Mean correlation with
streamflow in 19 Sierra Nevada watersheds is better with reconstructed SWE (r¼ 0.91)
versus blended SWE (r¼ 0.81), snow sensor SWE (r¼ 0.85), and SNODAS SWE
(r¼ 0.86). On the other hand, the correlation with blended SWE is generally better than
with reconstructed, snow sensor, and SNODAS SWE late in the snowmelt season when
snow sensors report zero SWE but snow remains in the higher elevations. Sensitivity tests
indicate downwelling longwave radiation, snow albedo, forest density, and turbulent fluxes
are potentially important sources of errors/uncertainties in reconstructed SWE, and domain-
mean blended SWE is relatively insensitive to the number of snow sensors blended.
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1. Introduction

[2] Understanding mountain hydrological processes is
crucial to projections of water supply in California’s Sierra
Nevada and throughout the western United States, where
the seasonal snowpack provides the main source of water
for agriculture, recreation, hydropower, urban supply, and
downstream habitats [Bales et al., 2006]. Characteristic of
Mediterranean climates, the Sierra Nevada’s wet winter
months (November to March) account for 70–80% of the
total annual precipitation [Pandey et al., 1999]. Snow accu-
mulation during the wet season becomes an important

water resource during the dry summer. The distinct snow
accumulation and ablation seasons throughout the Sierra
Nevada are attributable to regional-scale weather systems,
with the mountains enhancing precipitation as they block
and lift the moist air [Alpert, 1986; Barros and Lettenma-
ier, 1994].

[3] Accurate estimates of snow water equivalent (SWE)
in mountainous regions are needed for improved hydrologi-
cal modeling and water resource management [Rice et al.,
2011]. Such estimates can also improve regional climate
model evaluation [Caldwell et al., 2009] and therefore lead
to more robust estimates of hydrological response to re-
gional climate change. Such information will also be help-
ful in understanding snowmelt-related groundwater
dynamics in alpine ecosystems [Lowry et al., 2010]. The
complex topography in mountainous regions makes it diffi-
cult to interpolate spatially sparse in situ snow observations
over large areas [Molotch and Bales, 2005, 2006]. Several
studies have documented the topographic controls on snow
distribution at the headwater catchment scale, based on
densely distributed snow measurements [e.g., Elder et al.,
1991; Winstral et al., 2002; Erickson et al., 2005; Molotch
et al., 2005a, 2005b], but over large areas such as the whole
Sierra Nevada the density of automated snow sensors is
about 1 in 700 km2. Hence, relationships between observed
SWE and physiographic variables are not adequate for ro-
bust interpolation or extrapolation over such large regions.
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[4] Direct estimation of SWE using passive microwave
remote sensing has limited utility in the mountains, because
subpixel variability in land surface states complicates rela-
tionships between SWE and brightness temperature. Active
microwave remote sensing has shown promise for SWE
measurement at fine spatial resolution [Shi, 2008], but there
is no current operational mission for such applications. Air-
borne remote sensing of SWE via observations of the
attenuation of terrain-emitted gamma radiation is regularly
conducted throughout the United States by the National
Weather Service. However, it is limited to terrain of moder-
ate complexity and to areas with SWE less than about
250 mm [Peck et al., 1971; Carroll et al., 2001]. Mean
April 1 SWE in the Sierra Nevada is above 250 mm during
most years [Guan et al., 2010], making the technique
largely impractical except during anomalously low snow
years, at lower elevations, or late in the melt season.

[5] Previous studies have illustrated that snow cover
depletion patterns repeat from year to year with the timing
of ablation largely controlled by accumulation magnitude
[D�ery et al., 2005; Sturm and Wagner, 2010]. Methods to
reconstruct spatiaotemporal variation of SWE combine the
satellite-observed rate of snow depletion with a calculation
of the melt rate to retroactively estimate, as the snow melts,
how much had existed earlier in the season [Martinec and
Rango, 1981]. Under the assumption of insignificant
ablation-season snow accumulation, such methods can cal-
culate peak SWE by back-integrating the total snowmelt
from the time of snow disappearance to the time at which
snowmelt begins. Compared to forward modeling, such
methods do not rely on accurate estimate of initial SWE
nor do they depend on availability of precipitation forcings.
In comparison with forward-modeling approaches, the
reconstruction approach shows promise for characterizing
snow distribution in unsampled regions where forward-
modeling approaches are most uncertain [Raleigh and
Lundquist, 2012]. In small drainage basins (<100 km2) in
the western United States, this reconstruction approach has
had reasonable success [Cline et al., 1998; Molotch et al.,
2004]. Extension of the reconstruction approach to the
larger Merced and Tuolumne River basins, California
(1403 and 2422 km2) [Rice et al., 2011], the Rio Grande
headwaters, Colorado (3419 km2) [Molotch, 2009], and the
entire Sierra Nevada (60,000 km2) [Rittger, 2012] found
promising results. Also, the approach effectively explained
the interannual variability of mean maximum SWE in the
Tokopah Basin (19.1 km2) in the southern Sierra Nevada,
California, and the Green Lake 4 Valley (2.2 km2) in the
Front Range of Colorado over a 12 year period, with R2

values of 0.84 and 0.61, respectively [Jepsen et al., 2012].
[6] Application of the reconstruction approach to larger

areas is limited by the difficulty of distributing model forc-
ings over these scales and inaccuracies in larger scale
snow-covered area (SCA) data products, but recent
improvements in downscaling coarse spatial-resolution me-
teorological information (e.g., temperature, wind speed,
relative humidity, and solar and thermal radiation) have
enabled snowmelt simulations at regional scales [Andreadis
and Lettenmaier, 2006; Durand et al., 2008; Molotch and
Margulis, 2008]. Furthermore, improvements in detection
of SCA from spaceborne platforms with daily temporal re-
solution [Painter et al., 2009; Rittger et al., 2013] afford

SWE reconstruction at larger scales, including the entire Si-
erra Nevada [Dozier, 2011]. While interpolation of sparsely
distributed point SWE measurements over a large domain
has limited utility for SWE estimation [Fassnacht et al.,
2003], blending such measurements into the reconstruction
may help constrain SWE estimates [Raleigh and Lundquist,
2012]. Such a blending approach may afford large-scale
SWE estimation at previously unattained accuracy levels.
Despite this potential, no study has blended surface obser-
vations of SWE with a SWE reconstruction model. More-
over, such a blending procedure may afford extension of
the SWE reconstruction approach to larger spatial scales,
e.g., mountain range scales (�100,000 km2). Accurately
estimating SWE at these larger scales is critical for evaluat-
ing the hydrologic sensitivity to changes in climate [Chris-
tensen et al., 2004; Maurer, 2007], land cover change
[VanShaar et al., 2002], and extreme weather events [Nei-
man et al., 2008]. Furthermore, such large-scale SWE esti-
mates are critical for evaluating the terrestrial water
balance via distributed models [Haddeland et al., 2011]
and remotely sensed data [Niu et al., 2007; Syed et al.,
2009].

[7] The objectives of the current study are (i) to evaluate
the accuracy of the baseline reconstructed SWE estimates
and the blended SWE estimates using �3600 in situ meas-
urements, (ii) to illustrate the utility of the reconstructed
and blended SWE estimation approaches by comparing
with other SWE products in terms of accuracy and correla-
tion with streamflow, and (iii) to characterize SWE distri-
bution across the Sierra Nevada area at subwatershed
resolution (15 arc second, �500 m) using the reconstruc-
tion/blending approach described above. Data and methods
are described in section 2. Results and validation are given
in section 3. Section 4 addresses the sensitivity of the
reconstruction and blending methods. Discussion of the
results is given in section 5, followed by the conclusion in
section 6.

2. Data and Methods

2.1. Study Area

[8] The 64,514 km2 study area (Figure 1) covers 20
drainage basins that span the Sierra Nevada, 19 of which
have full natural flow data (Table 1). Melt from the sea-
sonal snowpack feeds rivers and recharges groundwater
aquifers in the region. Most of the major rivers are located
along the western slope of the mountain range, which flow
westward to California’s Central Valley. Mean elevation of
the area is 1719 m, ranging from 30 to 4343 m. Mean forest
density is 46% above 1500 m elevation (data described in
section 2.2.2).

2.2. Data

2.2.1. Snow Water Equivalent
[9] Ground truth SWE estimates were derived from care-

fully selected and timed snow surveys conducted at six
sites (Figure 1, triangles) in the central and southern Sierra
Nevada that represent areas of 16–20 km2. Surveys were
conducted near the estimated date of maximum snow accu-
mulation (�1 April of each year), and some surveys also
took place in the middle of the melt season (�15 May of
each year). About 3600 snow depth measurements were
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collected from 20 surveys during 2000–2009 and distrib-
uted to 30 m � 30 m pixels using two methods. A
regression-tree model was used for sites other than the
most southern site, Tokopah [Meromy et al., 2012]. The
regression tree model calculated gridded snow depths based
on the snow survey observations and a variety of terrain-
related independent variables derived from a digital eleva-
tion model (DEM) [Molotch and Bales, 2005; Molotch
et al., 2005a, 2005b]. The spatial density of the Tokopah
surveys was not large enough to apply the regression-tree
model, so gridded snow depths for this site were deter-
mined by linearly scaling the mean snow depths over 4
years (1996–1999) of intense surveys by the observed snow
depths [Jepsen et al., 2012, their Appendix B]. Gridded
snow depths were multiplied by the mean observed snow
density at each site to get gridded SWE, hereafter called
the ‘‘snow survey SWE’’ that provides a best estimate of
the spatial SWE variability over a heterogeneous terrain
suitable for validating model performance.

[10] Operational SWE observations are provided by the
California Department of Water Resources’ snow sensor

network (http://cdec.water.ca.gov/). Daily data from 104
snow sensor sites above 1500 m elevation (Figure 1, black
dots) for the period of 2000–2012, hereafter called ‘‘snow
sensor SWE,’’ are used both for the creation of blended
SWE (described in section 2.4) and for model evaluation
(as a secondary evaluation metric relative to snow surveys).
Negative SWE values (which are physically unrealistic) are
discarded. Note that validation and blending are performed
independently via cross validation with these data.

[11] To compare reconstructed and blended SWE prod-
ucts to an existing SWE product, we use fine-resolution
(1 km � 1 km) SWE over the contiguous US produced
operationally by the Snow Data Assimilation System
(SNODAS). SNODAS assimilates snow information from
ground-based, airborne, and satellite platforms [Carroll
et al., 2001; Rutter et al., 2008]. Its daily availability from
30 September 2003 provides a benchmark against which
development of new SWE products should be compared
[e.g., Rittger, 2012]. SNODAS ingests a variety of different
sources of information, while information about snow
extent is assimilated to mask daily estimates of SWE. Con-
siderable underestimates in SWE may occur as satellite
images assimilated into SNODAS do not account for snow
beneath the forest canopy well [Barrett, 2003]. Also, SNO-
DAS does not use information about snow cover depletion,
and so comparisons with the reconstruction approach are
needed.
2.2.2. Snow-Covered Area

[12] Images of fractional SCA (fSCA), the portion of each
500 m � 500 m grid cell covered with snow, are derived
from spectral surface reflectance observations by the
MODIS instrument [MODIS Snow-Covered Area and
Grain size (MODSCAG): Painter et al., 2009]. Multiple
endmember spectral mixture analysis is used by MOD-
SCAG to retrieve snow information over surfaces with
complex structures. Daily images are masked by cloud
cover information extracted from the standard MOD09

Table 1. Flow Gauges and Corresponding Watersheds in the
Sierra Nevada

No. Watershed Flow Gauge
Drainage

Area (km2)

1 Feather Feather River at Oroville 9389.4
2 Yuba Yuba River near Smartville 3871.3
3 American American River below Folsom 5310.7
4 Cosumnes Cosumnes at Michigan Bar 1680.0
5 Mokelumne Mokelumne River at Pardee 2064.3
6 Stanislaus Stanislaus River below Goodwin 2582.2
7 Tuolumne Tuolumne River below La Grange 4184.3
8 Merced Merced River below Merced Falls 2846.1
9 San Joaquin San Joaquin River, Millerton 4418.7
10 Kings Kings River below Pine Flat 4789.6
11 Kaweah Kaweah River below Terminus 2428.5
12 Tule Tule River below Success 1094.7
13 Kern Kern River near Bakersfield 6141.6
14 Truckee Truckee, Tahoe to Farad 1112.6
15 West Fork

Carson
West Fork Carson at Woodfords 274.2

16 East Fork
Carson

East Fork Carson near Gardnerville 900.1

17 West Walker West Walker below Lake Walker 1054.3
18 East Walker East Walker near Bridgeport 1303.5
19 Owens Owens River below Long Valley 8107.6
20 Lake Tahoe No full natural flow data 960.2

Figure 1. The study area consists of 20 watersheds (out-
lined by the yellow lines) in the Sierra Nevada, California.
Snow survey (blue triangles) and snow sensor sites (black
dots) are marked, as are major cities (white dots). Full natural
flow data are available for 19 of the 20 watersheds (Table 1).
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product based on Terra/MODIS and other sensors [Kotche-
nova et al., 2006; Kotchenova and Vermote, 2007] and
then manually screened for potentially nonretrieved cloud
contaminations, with questionable images discarded.
MODSCAG retrievals compare well with Landsat The-
matic Mapper data in terms of accuracy [Rittger et al.,
2013], while their daily availability allows for more cloud-
free images to be retained for each reconstruction. On aver-
age, 72 images are retained each year for the 6 month
reconstruction period (March to August). fSCA images are
adjusted for canopy occlusion of snow cover, with cor-
rected images given by

fSCA ¼
fSCA;MODSCAG

1� fVEG
ð1Þ

where fVEG is percentage forest density [Molotch and
Margulis, 2008]. It should be noted that the corrected
images may still underestimate fSCA depending on the for-
est density, with underestimates exceeding 40% at a heav-
ily forested site (79% forest density) in the Sierra Nevada
during the melt season [Raleigh et al., 2013]. Forest den-
sity data are from the Global Forest Resources Assess-
ment 2000 (FRA2000: http ://edc2.usgs.gov/glcc/fao/).
The 1 km � 1 km forest density data are interpolated to
model resolution using cubic convolution. Cloud-
contaminated fSCA pixels and discarded fSCA images are
filled in by interpolating between the two nearest available
images before and after the current time step, with cumu-
lative potential snowmelt (see section 2.3) as the explana-
tory variable [Molotch, 2009].
2.2.3. Full Natural Flow

[13] Correlation with streamflow is used as an illustra-
tion of the potential utility of the SWE estimates to be pro-
duced. The magnitude of the streamflow is not an
independent measurement of the total SWE volume,
because of evaporation and transpiration of snowmelt and
losses to groundwater before it reaches the stream gauges.
Monthly full natural flow estimates for 19 rivers (Table 1)
from the California Department of Water Resources
(http://cdec.water.ca.gov/snow/current/flow/fnfinfo.html)
account for upstream diversions, storage, and exchange of
water with other watersheds.
2.2.4. Model Forcing

[14] Estimates of radiative (above-canopy insolation)
and meteorological (precipitation, wind speed, air tempera-
ture, specific humidity, and surface air pressure) forcing for
the SWE reconstruction model are provided by the North
America Land Data Assimilation System Phase 2
(NLDAS: http://ldas.gsfc.nasa.gov/nldas/). The meteoro-
logical forcing is interpolated from NLDAS resolution (1/8
degree � 1/8 degree) to model resolution (15 arc second �
15 arc second) as follows: (1) the lapse rate (rate of change
with height) of each forcing variable is calculated by
regressing the variable (i.e., a spatial field) to topographic
data from the Shuttle Radar Topography Mission [SRTM:
Farr et al., 2007] upscaled to NLDAS resolution, (2) the
height-dependent part of each variable is linearly removed
based on the lapse rate, (3) the residual part is bilinearly
interpolated to model resolution, and (4) the height-
dependent part is added back to the interpolated residuals
to obtain the forcing variables at model resolution.

[15] NLDAS estimates of solar radiation over wavelength
0.2–3 �m are downscaled using TOPORAD [Dozier, 1980;
Dozier and Frew, 1990; Molotch and Margulis, 2008]:

Sdownscaled;i ¼
STOPORAD;i

1
K

PK
k¼1 STOPORAD;k

SNLDAS ð2Þ

where SNLDAS is the NLDAS estimate of solar radiation for a
given NLDAS grid cell, STOPORAD,i is the clear-sky solar
radiation simulated by TOPORAD at pixel i, K is the num-
ber of model pixels within the NLDAS grid cell, and
Sdownscaled,i is the downscaled solar radiation. Mean root-
mean-square (RMS) error in calculated downwelling short-
wave radiation over the Tokopah Basin (located within our
modeling domain) was 79 W m�2 [Jepsen et al., 2012]. The
downscaled insolation is multiplied by a forest canopy solar
transmission coefficient [Cline and Carroll, 1999] to get
subcanopy insolation modulated by the FRA2000 forest
densities. Snow albedo is calculated using the US Army
Corps of Engineers [1956] (USACE) scheme.

[16] Upwelling longwave radiation is calculated using
the Stefan-Boltzmann equation based on snow surface tem-
perature, assumed to be the downscaled NLDAS 2 m air
temperature one hour earlier or 0�C, whichever is colder
[Cline and Carroll, 1999]. Snow emissivity is assumed to
be 0.98 [Dozier and Painter, 2004]. Downwelling long-
wave radiation is from NLDAS, with corrections for forest
canopy [Cline and Carroll, 1999].

2.3. Reconstruction Model

[17] For application to large domains, the SWE recon-
struction model [Molotch, 2009] is modified to account for
Earth curvature and varying solar geometry over the model
domain. The model reconstructs peak SWE of each season
by back-integrating snowmelt at each model step calculated
from the energy balance at the snow surface and scaled by
fSCA. Snow depletion curves determined by cumulative
potential snowmelt (i.e., assuming full snow coverage
within a pixel) are used to interpolate fSCA images over
temporal gaps, and in turn convert potential snowmelt to
actual snowmelt. Daily estimates of actual snowmelt are
back-integrated from the period of satellite observed snow
disappearance to the onset of snowmelt. The model domain
covers Figure 1, with a zonal and meridional resolution of
15 arc second (�500 m), consistent with the resolution of
MODIS snow cover observations. A total of 13 years
(2000–2012) are reconstructed. For each year, the model
covers the entire melt season at hourly time steps from
00:00 1 March to 23:00 31 August UTC.

[18] Potential snowmelt at each model pixel and each
time step is calculated based on the following energy bal-
ance at the land surface:

Mp�L ¼ S # 1� �ð Þ þ LW # þLW " þSH þ LH ð3Þ

where S # is the subcanopy insolation, � is snow albedo,
LW # is the downwelling longwave radiation, LW " is the
longwave radiation emitted from the snowpack, SH is the
sensible heat exchange, LH is the latent heat exchange, � is
the density of liquid water, L is the latent heat of fusion,
and Mp is the potential melt; fluxes toward (away from) the
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snow surface are considered positive (negative). Sensible
and latent heat fluxes are calculated from wind speed, tem-
perature, and relative humidity [Jordan, 1991], with stabil-
ity adjustment based on the sign of the bulk Richardson
number [Liston et al., 1999]. Turbulent fluxes are not cor-
rected for canopy, the effect of which is expected to be in-
significant in this application given that turbulent fluxes
account for a relatively small fraction of the snowmelt
energy (10% on average in the Tokopah Basin) [Jepsen
et al., 2012]. The right side of the equation gives the maxi-
mum possible energy available for melting snow. Potential
melt is scaled by fSCA of the pixel to obtain actual melt dur-
ing a time step:

M ¼ Mp � fSCA ð4Þ

[19] The ablation season mass balance of the snowpack
can be approximated by

SWEn ¼ SWE0 �
Xn

j¼1

Mj ð5Þ

where SWEn is SWE at time step n, SWE0 is the initial
SWE, and Mj is the actual melt during time step j. The ini-
tial SWE at each model pixel can be reconstructed at the
time when fSCA indicates snow disappearance:

SWE0 ¼
Xn

j¼1

Mj; when SWEn ¼ 0 ð6Þ

[20] SWE at each model time step can be obtained
henceforth by using equation (5). SWE values at 06:00
UTC daily (following SNODAS) are extracted. This daily
SWE product is the subject of subsequent validation analy-
sis and is hereafter called the ‘‘reconstructed SWE.’’

[21] With no systematic biases in equation (5), overesti-
mates of reconstructed peak SWE will be determined by
the amount of snow accumulation during the melt season.
For each year of 2004–2012, snowfall after peak SWE
accounts for 4%, 8%, 2%, 25%, 5%, 17%, 10%, 10%, and
3% of the total seasonal snowfall in the Sierra Nevada
above 1500 m elevation based on the SNODAS input
snowfall data. In some years, especially 2007 and 2009, it
is one of the main error sources.

2.4. Blending of Reconstructed and Observed SWE

[22] Snow sensor SWE is blended with reconstructed
SWE for each day to constrain the retrieval. The difference
between reconstructed and observed SWE at each snow sen-
sor site is distributed to all model pixels using the inverse of
the squared distance as distribution weights [Molotch et al.,
2005a, 2005b]. Blended SWE is produced by subtracting the
distributed residuals from reconstructed SWE:

SWEblended;l ¼ SWEreconstructed;l �

PN
k¼1 SWEresidual;k

1
D2

l;kPN
k¼1

1
D2

l;k

ð7Þ

where SWEblended,l is blended SWE at pixel l, SWEreconstructed,l

is reconstructed SWE at pixel l, SWEresidual,k is the difference

between reconstructed and observed SWE at snow sensor
site k, Dl,k is the distance between pixel l and snow sensor
site k, and N is the number of available snow sensor sites.
The blended SWE is set to zero where the MODIS-based
fSCA is zero, keeping the final estimate consistent with the
satellite-observed snow extent. When all sensors report
zero SWE, the blended product becomes a smoothed ver-
sion of reconstructed SWE.

2.5. Evaluation Method

[23] In situ observations of two types are used to evalu-
ate reconstructed and blended SWE. (i) Snow survey SWE,
with high-resolution spatial sampling, is best suited for val-
idating the model results. However, these manually inten-
sive snow surveys are limited in number and location. (ii)
Snow sensor SWE values are from spatially sparse ‘‘point’’
observations, and hence represent ‘‘truth’’ less well at
model resolution; but they are distributed across the model
domain. Moreover, their daily availability enables assess-
ment of the temporal evolution of model errors. Because of
the discrepancy in their representative spatial scales, model
evaluation with these snow sensor data is expected to be
less robust than evaluation with the snow survey data.

[24] To facilitate comparison, snow survey SWE (30 m
� 30 m) and reconstructed/blended SWE (about 500 m �
500 m) are upscaled to SNODAS resolution (about 1 km �
1 km) by averaging within each SNODAS pixel. Statistics
are calculated and compared between different SWE prod-
ucts over the common grid.

[25] Cross validation [Carroll and Cressie, 1996; Erxle-
ben et al., 2002; Fassnacht et al., 2003; Luzio et al., 2008]
is used to evaluate blended SWE over snow sensor sites;
blended SWE equals snow sensor SWE at each snow sen-
sor site, by definition. To evaluate the accuracy at these
sites, the blending procedure is repeated many times by
leaving out each snow sensor site iteratively. For the omit-
ted site, blended SWE is obtained from residual SWE cal-
culated from the remaining snow sensor sites. The
procedure is repeated until blended SWE values are
obtained for all snow sensor sites independent of the
observed SWE at the individual site. This ancillary data set
is called the ‘‘cross-validated blended SWE.’’

3. Results

3.1. Evaluation With Snow Survey Data

[26] Relative to snow survey SWE, reconstruction under-
estimates mean SWE in all but one of the cases (Figure 2,
red dots). For blended SWE, underestimates and overesti-
mates occur in 8 and 12 cases, respectively. Underestimates
occur in SNODAS SWE in all but one of the cases.
Blended SWE has smaller RMS errors than does recon-
structed SWE in 15 out of the 20 cases. Among the 17
cases when SNODAS data are available, RMS errors are
smaller in reconstructed SWE than in SNODAS SWE in
six cases and are larger in the other 11 cases. In compari-
son, RMS errors are smaller in blended SWE than in SNO-
DAS SWE in nine out of the 17 cases. Error statistics
averaged over the 17 cases are given in Table 2. It should
be noted that most snow surveys are near a snow sensor
site (see Figure 1) that was ingested into SNODAS but not
into reconstructed SWE. Noteworthy are the Tokopah
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surveys, which are not near a snow sensor site. Validation
with the Tokopah surveys shows that both reconstructed
and blended SWE are consistently more accurate than
SNODAS SWE (Figures 2d–2f).

3.2. Evaluation With Snow Sensor Data

[27] Figure 3 compares April 1 SWE with snow sensor
SWE, reconstructed SWE, cross-validated blended SWE
(section 2.5), and SNODAS SWE for 13 years. For snow

Figure 2. Box-and-whisker plots of snow survey (Ob), reconstructed (Re), blended (Bl), and SNODAS
(SN) SWE (m). Whiskers are drawn one interquartile range (IQR) below the first quartile and one IQR
above the third quartile. Outliers, if any, are not shown. Red dots indicate the means. X-marks show the
RMS error of reconstructed, blended, and SNODAS SWE compared to snow survey SWE. Snow survey
sites (see Figure 1, blue triangles) and dates are indicated in the plot titles. SNODAS data are not avail-
able until 2003, and so are missing in Figures 2a–2c.
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sensors, the values are averages over all sites. For others,
the values are averages over those pixels with a snow sen-
sor site inside. Reconstructed April 1 SWE is smaller than
the snow sensor observation in 11 out of the 13 years. The
two are closer in 2000, 2003, 2006, and 2010 when their
difference is within 9% of snow sensor SWE. Blended
April 1 SWE is almost identical to snow sensor observa-
tions (within 4%) in all 13 years. SNODAS compares well
with snow sensor observations in most years, the exception
being 2007 when SNODAS SWE is smaller than snow sen-
sor SWE by about 30%.

[28] Figure 4 compares daily time series of mean recon-
structed and snow sensor SWE, averaged over all snow sen-
sors. RMS errors and spatial correlations are calculated
between snow sensor sites and model pixels with a snow sen-
sor site inside. Mean SWE is underestimated in most recon-
structions, the main exception being the 2006 reconstruction,
when heavy snowfall occurred in March and early April.
Mean SWE bias is smallest during 2000, when reconstructed
SWE closely matches observed SWE throughout the recon-
struction period. For other years, seasonal maximum bias in
mean SWE is between 30% and 61% of April 1 snow sensor
SWE. RMS errors and correlations between reconstructed
and snow sensor SWE are stable over the beginning few
months of the melt season. RMS errors gradually decrease to
zero as snow disappears, which is not unexpected as both
reconstructed and observed SWE approach zero. Recon-
structed and observed SWE become uncorrelated near the end

of the melt season, when there is little snow on the ground.
Earlier, the correlation is reasonably high, ranging �0.4–0.8.
The maximum RMS error each year ranges from 1.2 to 1.7
standard deviations of the April 1 snow sensor SWE.

[29] Figure 5 shows error statistics for the cross-
validated blended SWE (section 2.5). The mean value of
blended SWE is almost identical to snow sensor observa-
tions throughout the melt season, which is desired but not
trivial given that at each snow sensor the blended SWE
value is obtained independently of the observed SWE at
that sensor. RMS errors are reduced considerably in all
years relative to reconstructed SWE. Correlations are also
larger, in general, although the improvements are not as
prominent as in RMS errors. The maximum RMS error
each year is reduced to 0.8–1.2 standard deviations of the
April 1 snow sensor SWE.

[30] Similar error statistics are calculated for SNODAS
SWE for the 9 years when SNODAS data are available,
shown in Figure 6. Mean SNODAS SWE follows snow
sensor observations in most years, with seasonal maximum
bias ranging between 10% and 20% of April 1 SWE; the
exception being year 2007 when maximum bias reaches
46% of April 1 SWE. These biases are considerably higher
than in the case of blended SWE (Figure 5), where maxi-
mum bias is within 6% of April 1 SWE during all years.
Correlations are larger than in the case of blended SWE.
The maximum RMS error each year is 0.6–0.9 standard
deviation of the April 1 snow sensor SWE. The blended
SWE value at each snow sensor site is obtained without
observed SWE information from that site, while snow sen-
sor SWE is assimilated in SNODAS. A truly equal compar-
ison would involve omitting each snow sensor from the
SNODAS SWE estimation procedure and then comparing
the SNODAS SWE estimate with the observed SWE.
Doing so is not possible because we do not have the SNO-
DAS code, but we presume the errors would be greater.
Hence, the quality of the blended SWE product relative to
SNODAS is probably greater than reported in this subsec-
tion, as already suggested by the snow survey based evalua-
tion in section 3.1 where the comparisons are more
representative of SNODAS errors relative to blended SWE.

Table 2. Mean Bias, Mean Absolute Error, and RMS Error (m) of
Reconstructed, Blended, and SNODAS SWE Averaged Over 17
Snow Surveysa

Reconstructed Blended SNODAS

Mean bias �0.193 (�40.0%) 0.001 (0.2%) �0.181 (�37.7%)
Mean absolute

error
0.226 (47.0%) 0.170 (35.4%) 0.223 (46.4%)

RMS error 0.252 (3.3 �) 0.205 (2.7 �) 0.254 (3.3 �)

aNormalized mean bias and mean absolute error (in percentage of mean
snow survey SWE), and normalized RMS error (in units of the standard
deviation of the snow survey SWE, �) are given in the brackets.

Figure 3. Snow sensor, reconstructed, blended (cross validated), and SNODAS SWE (m) on April 1
every year during 2000–2012, averaged over all snow sensor sites (see Figure 1, black dots). Correlations
between snow sensor SWE and the latter three are shown in the legend.
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3.3. Spatial SWE Differences

[31] Spatial April 1 SWE is compared between recon-
structed, blended, and SNODAS SWE (Figure 7). The
overall pattern of the SWE differences is similar from year
to year. Therefore, only 2 representative years, one rela-
tively wet and one relatively dry, are shown along with the
mean difference over the comparison period (2004–2012).

[32] Reconstructed SWE is less than SNODAS by up to
2.00 m and greater than SNODAS by up to 2.81 m during
the wet year of 2005. SWE differences are �1/3–1/2 as
large during the dry year of 2007. The mean difference
over 2004–2012 lies between the 2 extreme years, ranging
from �1.03 to 2.04 m (Figure 7, top row). Spatially, recon-
structed SWE is predominantly less than SNODAS over
the southern two thirds of the Sierra Nevada along the
western slope and greater than SNODAS in the northern-

most watersheds. High reconstructed SWE in the heavily
forested northern watersheds may be related to the correc-
tion for viewable gap fractions applied to fSCA maps. In that
regard, reconstructed SWE can be significantly larger than
SNODAS because the approach estimates subcanopy fSCA

based on observed fSCA within viewable gaps (i.e., open
areas).

[33] Blended SWE is greater than SNODAS SWE over
the majority of the domain (Figure 7, middle row). SWE
differences range from �1.64 to 2.86 m during 2005, from
�0.64 to 2.08 m during 2007, with the 2004–2012 mean
differences in between. Blending with snow sensors consid-
erably reduces the negative difference between recon-
structed and SNODAS SWE over the southern two thirds
of the Sierra Nevada. In this regard, blending the recon-
structed SWE with snow sensors affects the southern part

Figure 4. Mean SWE (m), averaged over all snow sensor sites (see Figure 1, black dots), is shown for
the reconstruction (red) and for the snow sensor observation (black). Also shown are the RMS errors of
the reconstruction relative to the observation (blue), and the correlation between the reconstruction and
the observation (green). The maximum RMS errors each year, shown in units of the standard deviation
of the observed April 1 SWE, vary from 1.2 to 1.7.
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more than the northern part of the Sierra Nevada (Figure 7,
bottom row, which effectively shows the distributed resid-
uals of the reconstructed SWE). It remains to be understood
what factors (e.g., elevation, forest density, and distribution
of snow sensors) determine the spatial pattern of the resid-
uals of the reconstructed SWE.

3.4. Streamflow Correlations

[34] Shown in Figure 8 are interannual correlations
between full natural flow and the four SWE data sets over
19 watersheds. Correlation is calculated between April to
July total flow and annual peak SWE, as well as between
monthly flow and SWE changes (DSWE), for each water-
shed. For monthly flow, DSWE over the current and the
preceding month is used in the calculation to accommodate
some delayed response in streamflow to snowmelt.

[35] Statistical correlations between peak SWE and April
to July full natural flow are consistently greater for recon-
structed SWE versus other SWE data sets; significant at

the 95% level among 15, 18, 16, and 17 out of the 19 water-
sheds for observed, reconstructed, blended, and SNODAS
SWE. Correlation (r) values average to 0.85, 0.91, 0.81,
and 0.86 for the four data sets, respectively (Figure 8a).
Reconstructed SWE better correlates with seasonal stream-
flow than does snow sensor SWE over 14 out of the 19
watersheds, and better than does SNODAS SWE over 17
out of the 19 watersheds. Relatively low correlations with
blended SWE tend to occur where correlations with snow
sensors are low (Feather, Tule) or where no snow sensors
are present (Cosumnes). On the other hand, missing or low
correlations of streamflow with snow sensors do not neces-
sarily relate to low correlations of streamflow with blended
SWE (Kaweah, West Fork Carson). Correlation with
blended SWE over the Cosumnes and West Fork Carson
watersheds, with no snow sensors, is similar to the correla-
tion with SNODAS SWE. Correlations with reconstructed
and blended SWE are greater than with SNODAS in the
northern portions of the Sierra Nevada (i.e., Feather, Yuba,

Figure 5. As Figure 4 except for the cross-validated blended SWE (m).
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American). These basins are particularly important for the
California State Water Project, and thus these snow prod-
ucts may be particularly relevant for water resource studies
in these basins.

[36] Of particular interest are the later months of the
melt season (June and July) when snow has melted in the
lower elevations. Many snow sensors show zero SWE dur-
ing these months, while in fact there is still snow in the
higher elevation not covered by the current snow sensor
network, as Rice et al. [2011] also show. Figure 9 illustrates
the unrepresentative sampling of the snow sensor network,
showing the elevation histogram of all model pixels versus
those pixels with collocated snow sensors. As seen, the

Figure 6. As Figure 4 except for SNODAS SWE (m).
Comparisons are not made before year 2004 because data
were unavailable.

Figure 7. Difference in April 1 SWE (m) between (top)
reconstructed SWE and SNODAS SWE, (middle) blended
and SNODAS SWE, and (bottom) blended and recon-
structed SWE. (left) 2005, (center) 2007, and (right) the
mean over 2004–2012. In each plot, the range of the SWE
difference (which is larger than the color bar limit) is indi-
cated in the square brackets under the year label. Water-
shed boundaries are shown by the black lines.
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snow sensor network has a better coverage over the middle
elevations, whereas limited representation of the lower and
higher elevations exists. Thus, during later months, the
number of snow sensors available to distribute SWE resid-
uals as part of the SWE blending procedure is much
reduced. The method nonetheless appears to remain effec-
tive during later months as natural streamflow correlations
are higher with blended SWE than with snow sensor,
reconstructed, and SNODAS SWE in the majority of the
cases (Figures 8b and 8c). Reconstructed SWE, which has
no reliance on in situ measurements, also shows high corre-
lations in most cases during these months, although in gen-
eral lower than blended SWE. On the other hand,
correlations cannot be obtained between snow sensor SWE
and streamflows over the majority of the watersheds since
few snow sensors are present over the higher elevations. It
is important to note that basins showing high correlations
between streamflow and reconstructed/blended SWE in
July (Figure 8c) correspond with higher elevations
(Figure 8d).

[37] Similar correlation values to those in Figure 8 can
be obtained when SWE outside the snow sensor elevation
range is not counted, suggesting that the contrasts in
streamflow correlations for snow sensor SWE versus other
SWE products are not merely a result of the inclusion of
SWE at higher and lower elevations in the other products
but reflect the differences between these SWE products.

3.5. Spatial and Interannual Variability of SWE

[38] Figure 10 (all except the lower right plot) shows the
spatial distribution of April 1 SWE percent anomalies for
Sierra Nevada elevations greater than 1500 m based on
blended SWE. The 13 year mean (Figure 10, lower right
plot) is removed from each model pixel to form SWE
anomalies. The 13 year mean SWE is characterized by
maximum values on the west side of the Sierra crest.
Above-average SWE is most prominent during 2005, 2006,
and 2011. Below-average SWE is seen throughout the Si-
erra Nevada during 2001, 2007, and 2012. The spatial pat-
tern of SWE anomalies varies from year to year. For

Figure 8. (a) Correlation between April to July total full natural flow and annual peak SWE above
1500 m elevation over 19 watersheds. (b) Correlation between June flow and May to June DSWE for the
3000–3500 m elevation band. (c) Correlation between June flow and May to June DSWE above 3500 m
elevation. (d) Mean elevation (m) and forest density (%) above 1500 m elevation. In each plot, the mean
over the 19 watersheds is shown by the rightmost group of bars. Correlations are for year 2004–2012,
with the dotted lines showing the 5% significance level based on a two-tailed test.
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example, SWE anomalies are larger in the southern portion
than in the northern portion of the Sierra Nevada during
2005, whereas larger SWE anomalies are seen in the north
than in the south during 2001, which could be related to the
position and strength of the storm track. Variability on
watershed and subwatershed scales is also evident. Domain
SWE is above the 13 year mean in 2005, 2006, and 2011,
below the 13 year mean in 2001, 2003, 2007, and 2012,
and close to the 13 year mean in other years (Figure 11).
Spatial SWE variability is larger in the drier years than in
the wetter years, according to the coefficient of variation
(not shown). The interannual spatial patterns in SWE
anomalies have implication for identifying the source of
water supply forecast errors associated with point-based
unrepresentative sampling and for identifying locations for
future snow sensor network expansion [e.g., Welch et al.,
2013].

3.6. Domain-Averaged SWE

[39] Figure 12 shows domain-averaged SWE within the
entire Sierra Nevada where elevation is greater than 1500
m, based on the four data sets: snow sensor, reconstructed,
blended, and SNODAS SWE. Model-interpolated fSCA is
also shown at 7 day intervals. Note that the snow sensor av-
erage does not attempt to characterize the magnitude of ba-
sin SWE, which will require careful interpolation of the
observed SWE values across the domain. Notable differen-

ces can be seen between the four domain-averaged SWE
estimates (SNODAS is not available during the first 4 years
compared), especially near peak accumulation. The snow
sensor estimate is expectedly higher given the inadequate
spatial sampling, unrealistic representation of the elevation
distribution (Figure 9), and the tendency of the snow sen-
sors being placed in locations with higher SWE [Molotch
and Bales, 2005; Newald and Lehning, 2011]. It is the
highest among the four estimates, except near the end of
the melt season when many snow sensors show zero SWE
while there is still snow in the higher elevations, as dis-
cussed in section 3.4. It is larger than the reconstruction-
based estimate by roughly a factor of two around the time
of peak accumulation during most years. The estimate
based on blended SWE falls between the snow sensor ob-
servation and reconstruction, because the residuals between
snow sensor and reconstructed SWE tend to be positive
(i.e., the model underestimates SWE), and therefore
blended SWE (which is based on these residuals and their
interpolation) is larger than reconstructed SWE. Peak SWE
in SNODAS is considerably smaller than in blended SWE
in most years. The different data sets show interesting tem-
poral characteristics. For example, reduction of snow cover
and SWE is rapid in 2001 and 2003 about 1 month before
snow disappears. While SWE reduction is also quick in
2005 and 2006, the snow cover follows a more gradual
depletion curve. Year 2006 stands out because of that
year’s large snowfall in March and early April. SWE stead-
ily increases from the beginning of March that year to
about double its initial amount in �1.5 months, as seen in
snow sensor, blended, and SNODAS SWE, while snow
covered area is relatively stable during this period.

4. Sensitivity Tests

[40] The sensitivity of reconstructed SWE is tested for
the following four aspects of the reconstruction model that
have the largest uncertainties: downwelling longwave radi-
ation, snow albedo, forest density, and turbulent fluxes. In
the control runs, NLDAS downwelling longwave radiation,
the USACE albedo algorithm, and FRA2000 forest density
data were used, and turbulent fluxes (i.e., sensible plus
latent) were explicitly calculated (section 2.3). For the sen-
sitivity test, downwelling longwave radiation is calculated
from downscaled NLDAS 2 m air temperature, where
clear-sky atmospheric emissivity is derived from 2 m air
temperature and water vapor pressure [Idso, 1981; Hodges
et al., 1983; Jordan, 1991] with corrections for forest can-
opy [Cline and Carroll, 1999]. This longwave scheme per-
formed reasonably well in the Tokopah Basin (located
within our modeling domain) with mean RMS error of 28
W m�2 [Jepsen et al., 2012]. For albedo, the Biosphere
Atmosphere Transfer Scheme (BATS) [Dickinson et al.,
1993] is used in the sensitivity test. Molotch and Bales
[2006] showed that this albedo scheme performed better
than the USACE scheme in the Tokopah Basin, but neither
scheme accounts for spatial variability of albedo decay.
Forest density from the National Land Cover Dataset
(NLCD) 2001 is tested, which has a 30 m spatial resolution.
For turbulent fluxes, the restricted degree-day method [Bru-
baker et al., 1996; Molotch and Margulis, 2008] is tested.
Unlike in the control run where sensible and latent heat

Figure 9. Elevation histogram for (top) all model pixels
and (bottom) snow sensor sites (Figure 1, black dots).
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fluxes are explicitly calculated, this method parameterizes
the bulk turbulent fluxes based on temperature and a
degree-day coefficient. Three different values of the
degree-day coefficient [Molotch et al., 2010] are tested,
representing their potential range. The tests are performed
for the year 2009, for which in situ SWE from nine snow
surveys in the Sierra Nevada are available.

[41] Error statistics of reconstructed SWE from these test
runs relative to snow survey SWE are given in Table 3.
Error statistics are similar to the control run when Idso
[1981] longwave or the degree-day method with a coeffi-
cient value of 0.15 cm �C�1 day�1 is used. Errors are
slightly larger than the control run when BATS albedo is
used, somewhat expected because the BATS algorithm
may overestimate albedo [Warren and Wiscombe, 1980;
Jin et al., 1999]. Errors are largest in the case of NLCD for-
est density and smallest in the case of a degree-day coeffi-
cient of 0.30. Larger errors based on NLCD forest density
compared to the control suggests that either FRA2000 used
in the control is more accurate despite the coarser spatial
resolution (1 km versus 30 m), or FRA2000 is less accurate
than NLCD but there are compensating errors from the
model. Considering mean reconstructed SWE over the nine
snow surveys, the difference based on the two forest den-
sity products is 0.06 m, and the difference based on a rea-
sonable perturbation to the degree-day coefficient (i.e.,
from 0.15 to 0.20) is 0.05 m (Table 3, the row for mean

bias). The above sensitivity in reconstructed SWE is equiv-
alent to about 10 W m�2 mean bias in net radiation above

Figure 10. April 1 SWE percent anomalies, as computed by the blended SWE, each year during 2000–
2012 (first 13 plots) relative to the 13 year mean April 1 SWE (lower right plot). Data for the 20 water-
sheds cover only pixels above 1500 m elevation.

Figure 11. Box-and-whisker plot of blended April 1
SWE. Statistics are based on all available pixels in the Si-
erra Nevada above 1500 m elevation. Whiskers are drawn
one interquartile range (IQR) below the first quartile and
one IQR above the third quartile. Outliers, if any, are not
shown. Red dots indicate the means, and the red line indi-
cates the 13 year mean.
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the snow surface. For reference, input downwelling solar
radiation to the reconstruction model (i.e., downscaled
NLDAS) has a mean bias of about �10 W m�2 evaluated
over 11 sites in the Sierra Nevada during 5 years (not
shown). Using a temperature index model, Slater et al.
[2012] estimated a 5 day error in the date of snow disap-
pearance or one degree error in air temperature is compara-

ble to 13 W m�2 error in net radiation in terms of the bias
produced in reconstructed SWE. The test here suggests the
sensitivity of reconstructed SWE to errors in forest density
products and degree-day coefficient values is comparable
to the sensitivity of reconstructed SWE to typical magni-
tude of errors in the time of snow disappearance and air
temperature in such applications. We do not account for the

Figure 12. Domain-averaged SWE (m) based on snow sensor, reconstructed, blended, and SNODAS
SWE. Model-interpolated fSCA is also shown at 7 day intervals, for reference. For snow sensor SWE,
averaging is done over all available sensor sites in the Sierra Nevada (Figure 1, black dots). For others,
averaging is over all available model pixels in the Sierra Nevada with elevation greater than 1500 m.

Table 3. Mean Bias (m), Mean Absolute Error (m), and RMS Error (m) of SWE From the Sensitivity Tests, Averaged Over Nine Snow
Surveys in Year 2009

Control
Idso Downward

Longwave BATS Albedo
NLCD

Forest Density
Degree

Day (0.15a)
Degree

Day (0.20a)
Degree

Day (0.30a)

Mean bias �0.20 �0.18 �0.22 �0.26 �0.20 �0.15 �0.05
Mean absolute error 0.22 0.21 0.24 0.28 0.23 0.20 0.18
RMS error 0.25 0.24 0.26 0.31 0.26 0.23 0.22

aUnit: cm �C�1 day�1.
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likely spatial variability of the degree-day coefficient
[Kumar et al., 2013]. The relative magnitudes of the error
statistics in Table 3 suggest the four aspects tested (i.e.,
downwelling longwave radiation, snow albedo, forest den-
sity, and turbulent fluxes) are all potentially important sour-
ces of errors and uncertainties in reconstructed SWE.

[42] To assess the applicability of the blended method
for other applications where snow sensor observations are
less available, sensitivity tests are done where 75%, 50%,
and 25% of the available sensors are randomly selected for
blending. Mean SWE from these tests closely follow the
control throughout the melt season (Figure 13, upper plot).
The sensitivity in mean SWE is relatively small compared
to the magnitude of mean SWE. Spatially, blended SWE
from the sensitivity tests are within 0.1 m of the control

over the majority of the domain. As the number of sensors
retained is reduced, local differences in blended SWE
become greater. SWE differences rarely exceed 0.1 m
when 50–75% of the sensors are retained but become con-
siderably larger when only 25% of the sensors are retained.

5. Discussion

[43] The overall accuracy of the blended SWE product is
encouraging, benchmarked by its better agreement, com-
pared to SNODAS, with densely sampled in situ observa-
tions from six snow survey sites consisting of �3600
measurements. One major difference between the recon-
struction approach and SNODAS is in the usage of
observed snow cover information. For SNODAS, observed

Figure 13. Sensitivity of blended SWE to the number of snow sensors used. (top) Mean SWE (m) in
the Sierra Nevada based on four blended SWE products where all (control), 75%, 50%, and 25% of the
snow sensors are used for blending with the reconstructed SWE. (bottom) April 1 SWE (m) differences
between the latter three products and the control.
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SCA is assimilated and used as a mask for model estimates
of SWE, but information about snow cover depletion is not
ingested into the model. In the reconstruction approach,
snow cover depletion information is used by back-
integrating snowmelt from zero to maximum snow cover
indicated by satellite SCA, which may have contributed to
the better quality of blended SWE relative to SNODAS
SWE. On a related note, the SCA interpolation approach
used here was quite different from Dozier et al. [2008].
First, we removed images with poor viewing geometry to
reduce the sensitivity of the SCA retrieval to viewing ge-
ometry. We then interpolated the SCA images based on cu-
mulative melt flux—an approach not used by Dozier et al.
[2008]. The benefit of our approach is that we use a dynam-
ically changing and physically relevant variable for inter-
polation of the SCA images. Application of the
reconstruction and blending method to other mountain
watersheds depends on the availability and quality of
observations, as well as better understanding of the error
sources.

[44] Mean absolute error of reconstructed SWE is 47%
of observed SWE, with percent errors ranging from
�78.3% to 18.7% over different snow surveys. The recon-
struction error is larger than that of previous applications in
much smaller study areas. For example, Molotch [2009]
found 23% mean absolute error in the application to the
Rio Grande headwaters (3419 km2) during 2001 and 2002
using Landsat fSCA images. Jepsen et al. [2012] reported
reconstruction errors in the range of �23% to 27% for the
Tokopah Basin (19.1 km2), and �37% to 34% for the
Green Lake 4 Valley (2.2 km2) during year 1996–2007,
both basins with significant areas above treeline. R2

between reconstructed and observed SWE is 0.74 over
2000–2012, comparing to 0.84 and 0.61 in Jepsen et al.
[2012] for their two study areas. The spatial point density
of evaluation data are comparable between the current and
the comparative studies; the evaluation data used in the
Tokopah Basin were the same data used by Jepsen et al.
[2012], and the sampling plan used at the other sites
included over 200 measurements per km2, which is very
similar to Molotch [2009]. Notwithstanding, the six snow
survey sites in the current study covers only 0.2% of the
model domain. In comparison, snow surveys cover 2.8% of
the model domain in Molotch [2009], and model domains
are aligned with snow survey sites in Jepsen et al. [2012].
Besides the density and availability of evaluation data,
errors in the reconstruction can likely be attributed to the
following error sources: (1) the input surface meteorologi-
cal and radiative forcing from NLDAS; (2) the downscal-
ing of surface forcing over topographically complex
terrains; (3) the fSCA satellite retrievals, including the fail-
ure to discriminate clouds from snow, and interpolation of
fSCA across temporal gaps caused by cloud contamination;
(4) the treatment of forest cover; (5) snow albedos calcu-
lated by the parameterization scheme that does not account
for spatial variability; and (6) significant snow accumula-
tion during some ablation seasons. Based on the sensitivity
tests (section 4), downwelling longwave radiation, snow
albedo, forest density, and turbulent fluxes are all poten-
tially important areas to be addressed in order to reduce
errors and uncertainties in reconstructed SWE. The quality
of blended SWE depends on the accuracy of the snow sen-

sors as well. A comparison between snow sensor and snow
survey SWE suggests that some snow sensors could have a
high bias in representing the 500 m � 500 m area surround-
ing a given snow sensor, although the mean bias (hence the
impact on blended SWE) could be much smaller (Figure
14). This potentially small mean bias should be distin-
guished from the expectedly high bias of using mean SWE
over snow sensors as an estimate of mean SWE across the
Sierra Nevada (Figure 12).

[45] The blended SWE product developed here could
help evaluate regional climate models [Caldwell et al.,
2009] and land surface/ecosystem models on watershed
scales [Kimball et al., 1997; Pan et al., 2003; Tague et al.,
2004]. Daily precipitation estimates can be derived from
SWE changes, which can be used in diagnosing high-
impact weather systems, such as atmospheric rivers [Guan
et al., 2010]. Future development of the reconstruction
model calls for improved observations and better treatment
of the model forcing. For example, downwelling longwave
radiation from different algorithms [Flerchinger et al.,
2009] need to be assessed. The accuracy of albedo products
from MODSCAG needs to be examined. The effects of for-
est cover and turbulent fluxes need to be better constrained
in models. The snow sensor network should better cover
the lower and higher elevations and better cover locations
with large spatial SWE variability in order to better con-
strain spatial SWE estimates.

6. Conclusions

[46] SWE bias is �0.193, 0.001, and �0.181 m, respec-
tively, in mean reconstructed, blended, and SNODAS
SWE, averaged over 17 snow surveys from six survey sites
in the Sierra Nevada. Corresponding mean RMS errors are
0.252, 0.205, and 0.254 m, respectively. The overall accu-
racy of blended SWE is higher than SNODAS SWE based
on validation against snow survey observations. Mean

Figure 14. Comparison of snow sensor SWE (‘‘point’’
values at snow sensor site) and mean snow survey SWE
over the reconstruction model pixel (15 arc second � 15
arc second, about 500 m � 500 m) surrounding the snow
sensor. Comparison over 11 snow surveys near five snow
sensor sites (see Figure 1) are shown.
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snow sensor SWE is best represented in blended SWE,
with negligible difference from the snow sensor observa-
tion. On average, full natural flow correlates better with
reconstructed SWE than with snow sensor and SNODAS
SWE over the 19 watersheds, particularly in parts of the Si-
erra Nevada critical for the California State Water Project.
Correlations are better with blended SWE than with snow
sensor and SNODAS SWE over the majority of the water-
sheds in the late season when point-based streamflow pre-
dictions are problematic. Sensitivity tests indicate that
large errors and uncertainties in reconstructed SWE are
associated with downwelling longwave radiation, snow
albedo, forest density, and turbulent fluxes. Domain-mean
blended SWE is relatively insensitive to the number of
snow sensors used for blending, but local sensitivities of
above 0.1 m exist, especially when only 25% of the sensors
are retained. Continued observational and modeling efforts
are needed to reduce uncertainties in SWE estimates across
large, hydrologically important watersheds, and to improve
water resource management in these areas.
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