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Chapter I Abstract 

Previous work demonstrates conflicting evidence regarding the influence of snowmelt 

timing on forest net ecosystem exchange (NEE). Based on 15 years of eddy-covariance 

measurements in Colorado, years with earlier snowmelt exhibited less net carbon uptake during 

the snow-ablation period, which is a period of high potential for productivity. Earlier snowmelt 

aligned with colder periods of the seasonal air temperature cycle relative to later snowmelt. We 

found that the colder ablation-period air temperatures during these early snowmelt years lead to 

reduced rates of daily NEE. Hence, earlier snowmelt associated with climate warming, counter-

intuitively, leads to colder atmospheric temperatures during the snow-ablation period and 

concomitantly reduced rates of net carbon uptake. Using a multilinear-regression (R2=0.79, 

P<0.001) relating snow-ablation period mean air temperature and peak snow water equivalent 

(SWE) to ablation-period NEE, we predict that earlier snowmelt and decreased SWE may cause 

a 45% reduction in mid-century ablation-period net carbon uptake.   

 

Chapter II Abstract  

Dai [2008] used a 29-year observational precipitation phase dataset to produce global 

conditional snow frequency curves (frequency of snow events per air temperature bin) for the 

land and ocean. We extended upon Dai’s study to further explore the influence of three 

physically relevant variables (surface air temperature (Ts), relative humidity (RH), surface 
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pressure (Ps)) on conditional snow frequency over the land surface. We found that precipitation 

events that fell at low ambient RH and/or low Ps had greater snow frequencies at high Ts 

compared with events that fell at high ambient RH and/or high Ps, respectively. However, the 

range in snow frequencies per Ps class is less than the range per RH class. We developed and 

compared three binary logistic regression models using Ts, RH and Ps as predictor variables for 

precipitation phase. The Ts-RH model performed universally better than the simple Ts model 

and the Ts-RH-Ps model had nearly identical success rates to the Ts-RH model. The largest 

difference in success rates between the Ts-RH model and the simple Ts model occurred at the 

lower RH classes, and all models performed universally better in the higher RH classes. 

Therefore, while our results demonstrate that RH should be included in precipitation phase 

predictive models whenever possible, we might expect RH to more significantly contribute to 

models utilized in climatically dry regions. These models were developed and tested with a 

global dataset of ~15 million precipitation observations and thus present the most the most 

extensive global phase prediction model to date 
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Chapter I: Early Snowmelt Reduces Atmospheric Carbon Uptake in 
Coniferous Forests  

Introduction 

Globally, forests represent a large and persistent terrestrial carbon sink that regulates 

atmospheric CO2 concentration [Pan et al., 2011]. Forty percent of these forests reside in 

seasonally snow-covered environments, which are particularly sensitive to climate change due to 

the temperature dependence of precipitation phase [Barnett et al., 2005; Flanner et al., 2011]. 

Seasonally snow-covered forests represent a key terrestrial carbon sink in both mountainous 

[Schimel et al., 2002] and boreal ecosystems [Bernhardt and Schlesinger, 2013]. Evaluating the 

climate sensitivity of these forests is critical as winter temperatures are increasing [Baldwin et 

al., 2003; Bradley, 2004; Nogués-Bravo et al., 2007], causing reductions in snow accumulation 

[Hamlet et al., 2005; Mote, 2006; Clow, 2010] and shifting snowmelt earlier in the year [Stewart 

et al., 2004; Clow, 2010].  

The snow-ablation period, which provides a sustained soil water input, is a time of great 

potential for carbon uptake in seasonally snow-covered environments [Monson et al., 2005; 

Harpold and Molotch, 2015]. In evergreen mountain forests, where carbon uptake is 

biophysically restrained during the winter, the snow-ablation period is when the ecosystem 

begins to assimilate carbon through photosynthesis and relatively low soil temperatures diminish 

carbon loss from soil respiration [Monson et al., 2005]. As a result, carbon uptake during the 

snow-ablation period can account for a significant component of growing season NEE (up to 

42% [Monson et al., 2005]). However, varying meteorological conditions can impact carbon 

uptake rates during this time [Huxman et al., 2003].  
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Synthesis studies of atmospheric carbon uptake in forested ecosystems, including those from 

mountain and high-latitude sites, have predicted that earlier springs and later autumns, due to 

climate warming, will result in increased carbon sequestration [Richardson et al., 2010]. 

However, several reports have blurred our understanding of the direction (source or sink) and 

magnitude of forest-atmosphere CO2 exchange in the face of climate variation.  Some studies of 

high-latitude forests have revealed increased [Black et al., 2000], decreased [Goulden, 1998], or 

no effect [Dunn et al., 2007] of earlier spring snow melt on total seasonal forest carbon uptake. 

Piao et al. [2008] and Wu et al. [2013] have shown that the effects of earlier spring warming and 

snowmelt on high-latitude forest net carbon exchange is dictated by the relative magnitudes of 

increased seasonal photosynthetic uptake versus increased autumn respiration. Similar 

photosynthesis-respiration trade-offs are at play in subalpine forests, as some studies show that 

longer growing seasons lead to less carbon uptake [Sacks et al., 2007; Hu et al., 2010], while 

others indicate the contrary [Scott-Denton et al., 2013; Mitchell et al., 2015]. We note that these 

seasonally snow covered high-latitude and subalpine forests share similar dependencies on 

snowmelt as a water source and both have a general energy limitation during the winter; 

however, they differ in their species compositions and meteorological conditions (e.g. given 

latitudinal gradients in solar radiation).  

Given the lack of consensus regarding the carbon balance response to changing snowmelt 

timing, it is important to determine whether seasonally snow-covered forest carbon sinks are 

strengthened or weakened in response to climate warming. We examined relationships between 

net ecosystem exchange (NEE) eddy covariance measurements and observed snow water 

equivalent (SWE) in a mid-latitude subalpine forest. Our objective is to characterize the 
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productivity response of subalpine forest ecosystems to hydrometeorological conditions during 

the snow-ablation period and to predict future productivity given changes in snowmelt timing 

and accumulation associated with climate warming.  

Data and Methods 

a) Site Description 

This study was conducted at the Niwot Ridge AmeriFlux site US-NR1, a subalpine forest 

in the Colorado Rocky Mountains at an elevation of 3050 m located 8 km east of the Continental 

Divide (40°1' 58"N 105°32' 47"W). The subalpine forest ecosystem (LAI=4.2 m2/m2; canopy 

height=11.5 m) is dominated by subalpine fir (Abies lasiocarpa), Engelmann spruce (Picea 

engelmannii), and lodgepole pine (Pinus contorta). Mean-annual precipitation is approximately 

800 mm, with about 65% in the form of snow. Mean annual temperature is 1.5°C. Descriptions 

of the physical and meteorological characteristics of the site can be found in previous studies 

[Monson et al., 2002, 2005; Turnipseed et al., 2002, 2003]. 

 

b) Eddy Covariance and Snow Water Equivalence (SWE) Measurements  

NEE has been continuously measured at 30-minute intervals from the 26 m Niwot Ridge 

AmeriFlux tower since November, 1998.  We used 15 years (1999-2013) of AmeriFlux friction-

velocity-filtered NEE, gap-filled measurements (ver.2014.12.02). This version includes a 

correction to an error in the dataset where a water-vapor correction was applied twice during the 

closed-path IRGA CO2 flux calculation [Burns et al., 2015]. Full descriptions of the eddy-

covariance method used to measure NEE have been previously presented [Monson et al., 2002]. 
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Further information on the turbulent flux gap-filling procedures can be found at: 

http://urquell.colorado.edu/data_ameriflux/ 

Daily SWE measurements were obtained from the Niwot Snowpack Telemetry 

(SNOTEL) station, located within 500 m of the flux tower 

(http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=663). We defined both the date and 

magnitude of peak SWE by the final local maxima in the SWE time-series in which the SWE 

magnitude is within 95% of the global SWE maxima. Subsequently, we defined the ablation 

period as the peak SWE date to the day of snow disappearance (SWE=0 m) and analyzed 

ablation-period daily NEE (cumulative ablation-period NEE divided by the length of the ablation 

period) in relation to the ablation-period mean air temperature (21.5 m). In this study ‘daytime’ 

is defined as any period of the day that the photosynthetic photon flux density (PPFD) is greater 

than 20 µmol/m2/sec. We defined the non-ablation period as the date of snow disappearance to 

the day that the 13-day moving average of NEE switches from negative to positive at the end of 

the season, indicating a transition from net carbon uptake to net carbon loss. We thus defined a 

‘full season’ from the date of peak SWE to the last day of the non-ablation period.  

 

c) Statistical methods and ablation-period NEE model   

Previous work in subalpine forests has illustrated NEE sensitivity to air temperature 

[Huxman et al., 2003; Monson et al., 2005], with maximum light saturated CO2 uptake occurring 

at approximately 11°C [Huxman et al., 2003]. A shift in the timing of snowmelt may have large 

impacts on air temperature during the early part of the growing season – which generally begins 

at the onset of snowmelt [Monson et al., 2005]. To explore the relationship between the change 

in the timing of snowmelt and air temperature during the ablation period, we used a linear 
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regression relating the date of peak SWE and ablation-period mean air temperature. We then 

explored the relationship between ablation-period mean air temperature and ablation period daily 

NEE, as well as the relationship between the date of peak SWE and the ratio of ablation-period 

cumulative NEE to full-season cumulative NEE. We used the relationship between date of peak 

SWE and ablation-period mean air temperature to produce a linear regression equation which 

uses the date of peak SWE as a predictor of ablation-period mean air temperature.  

To evaluate the processes influencing the range in total ablation-period NEE, we 

performed a multiple linear regression analysis with ablation-period mean air temperature and 

peak-SWE magnitude as physical predictors to explain the variation in total ablation-period 

NEE. These predictor variables were chosen for the multiple linear regression analysis both 

because of their individual correlations with ablation period NEE and our ability to project future 

trends of these variables based on current literature. We used the resulting multiple linear 

regression equation as a model to demonstrate potential current and future scenarios of ablation-

period NEE. To obtain the range of temperature values used as model input, we first inputted a 

range of day of peak SWE values into the linear regression equation established between day of 

peak SWE and ablation-period mean air temperature. Day of peak SWE inputs ranged from Day 

of Year (DOY) 65 to DOY 145, as the minimum DOY of peak SWE from the observed record 

was 73 and the maximum DOY of peak SWE was 144. We then took the resulting temperature 

range, along with a peak SWE magnitude range of 0.17 m–0.50 m (15-year observed record 

ranged from 175.3 mm to 454.7 mm), as model inputs to generate a range of potential ablation 

period NEE values.  
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Results 
 

The maximum ablation-period length was 55 days (2003) and the minimum was 17 days 

(2010) (Table A1 – Appendix A). The latest date of peak SWE was 24 May 2011 and the earliest 

was 13 March 2012, resulting in a substantial range in the date of peak SWE (71 days). Fig. 1 

demonstrates that the timing of peak SWE determined the alignment of the ablation period with 

the seasonal air temperature cycle: an early ablation period (e.g. 2002) occurred during a colder 

period (mean temperature=1.9°C) of the seasonal air temperature cycle relative to a later ablation 

period (e.g. 2013) that occurred during a warmer period (mean temperature=6.7°C). Thus, we 

next explored the phenological implications of the ablation timing/temperature alignment for 

ablation period NEE.  
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We found that the range in the date of peak SWE resulted in a vast range of ablation 

period mean air temperatures (1.9–7.9°C). Fig. 2a displays a significant positive correlation 

(R2=0.72, P<0.001) between the date of peak SWE and the ablation-period mean air temperature. 

This relationship produced the following linear regression equation:  

 

!!!"2002"
"""""2013"

!!!"2002"
"""""2013"

Figure 1 | (a) Snow water equivalent seasonal cycles for an early (WY-2002) and late (WY-
2013) ablation period. Red lines distinguish the ablation period. (b) Corresponding air 
temperature seasonal cycles for WY-2002 and WY-2013. Plotted as the 13-day moving average 
of daily temperatures. Red lines distinguish the temperatures during the ablation period.  
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1 										𝑇	 = 	−4.1662 + 0.07881 ∗ (𝐷)		 

 

where D is the Day of Year (DOY) of peak SWE. Equation (1) demonstrates that as snow melts 

earlier, the ablation period experiences mean air temperatures progressively less than the 

maximum CO2 uptake rate temperature of 11°C [Huxman et al., 2003], effectively misaligning 

the period of sustained soil water input from the timing of the optimum net uptake temperature.  

We found a significant negative correlation (R2=0.87, P<0.001) between ablation period 

daily NEE and ablation period mean air temperature (Fig. 2b). Lower mean air temperatures 

corresponded with reduced ablation period daily NEE. The variation in ablation period daily 

NEE was driven by ablation period daytime NEE, as daytime NEE had a range of 3.78 gC/m2/d, 

whereas nighttime NEE had a range of only 0.16 gC/m2/d. Example half-hourly data illustrate 

the NEE sensitivity to snowmelt timing and air temperature whereby NEE rates are shown to 

increase dramatically from early to late snowmelt (Figure 2c). In comparing NEE between an 

early ablation period (2002) and the same period during a year with late melt (2013), the daytime 

NEE rate during the 2002 ablation period (31 March-1 May) was -0.42 gC/m2/d, while the same 

time period for late ablation year of 2013 (31 March-1 May, before 2013 ablation period begins) 

reported a daytime NEE rate of 0.29 gC/m2/d. The sign difference in these two daytime NEE 

quantities indicates that the forest was active during the melt period in 2002, but not during the 

same time period in 2013 when melt was not occurring. The early ablation example in Fig. 2c 

further demonstrates the sensitivity of forest NEE to early snow ablation, as we see that there 

was a sudden reduction in NEE for an approximate 4-day stretch associated with air temperatures 

below 0°C; these rapid drops in air temperature are less likely to occur later in the year. We note 
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that we did not find a significant relationship between ablation period daily NEE and ablation-

period mean daytime PPFD (R2=0.11, P=0.23, supplemental Fig. A1 – Appendix A).  

  

 

!
!

(c)$
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The range in ablation period NEE was 95.4 gC/m2. In 2002 we observed a positive 

ablation period NEE (3.36 gC/m2); the ablation-period mean air temperature (1.9°C) and the 

peak SWE magnitude (175.3 mm) for 2002 were the respective variable minimums for the 15 

year record. Additionally, the 2002 ablation-season mean daytime uptake rate (-0.42 gC/m2) was 

the minimum for the period of record. The mean nighttime respiration (0.53 gC/m2) during this 

same period was enough to overwhelm the small daytime uptake rate and result in a net loss of 

carbon. All other years demonstrated a negative NEE during the ablation period, indicating net 

carbon uptake, with the greatest in magnitude being -92.02 gC/m2 occurring in 2007; a year with 

an ablation period average temperature of 5.0°C and the maximum peak SWE magnitude (454.7 

mm) for the period of record.  

There was a significant negative correlation between total ablation period carbon uptake 

(dependent variable) and ablation period mean air temperature and peak SWE magnitude 

(independent variables; R2=0.79, P<0.001) that produced the following multiple linear regression 

equation:  

 

2 										𝑁𝐸𝐸 = 	54.956		—		 5.4992	 ∗ 	𝑇 	—	(222.9	 ∗ 	SWE)	 

 

where NEE is the total ablation period NEE (gC/m2), T is the ablation-period mean air 

temperature (:C) and SWE is peak SWE (m). The range in the observed NEE that was fit with 

Figure 2 | (a) Relationship between date of peak SWE (horizontal axis) and mean air 
temperature during the ablation period (vertical axis) (R2=0.72, P<0.001). (b) Relationship 
between mean air temperature during the ablation period (horizontal axis) and ablation period 
daily NEE (vertical axis)(R2=0.87, P<0.001). (c) Half-hourly NEE for the 2002 ablation period 
that began on 31 March (early ablation), 2009 ablation period that began on 20 April (middle 
ablation), 2013 ablation period that began on 22 May (late ablation). 



	11	

equation (2) demonstrates that early season NEE is strongly coupled with snowpack dynamics. 

We note that ablation period mean air temperature and peak SWE magnitude did not exhibit 

collinearity for the observed record (Variable Inflation Factor=1.09) and that SWE had a greater 

influence than temperature in predicting total ablation period NEE. We use equation (2) to 

demonstrate potential current and future scenarios of ablation period NEE under various 

temperature-SWE magnitude scenarios. Fig. 3 displays the range of model results overlaid with 

the observed data. For an example future scenario corresponding to mid-century Western US 

projected SWE reductions of 20% percent [Leung et al., 2004] and snowmelt timing shift of two 

weeks earlier [Stewart et al., 2004; Clow, 2010], the mean ablation period NEE is predicted to 

decline by approximately 45% compared with the observed record.  
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In Fig. 4, we analyzed the contribution of the ablation period NEE to the full-season NEE 

(cumulative NEE from the date of peak SWE to the end of the previously defined non-ablation 

period). Fig. 4a shows a significant positive correlation (R2=0.42, P<0.01) between the ratio of 

ablation period NEE to full-season NEE and the date of peak SWE, indicating that when peak 

SWE occurred later in the year, the relative uptake contribution of the ablation period increased. 

Two years (2007 & 2013) had a ratio of approximately 0.31, demonstrating that the ablation 

period NEE can comprise >30% of full-season NEE. However, as the date of peak SWE shifted 

to earlier in the year, the relative uptake contribution from the ablation period approached zero. 

Therefore, as the ablation period continues to shift earlier in the year under climate warming, the 

resulting seasonal net carbon uptake will be more dependent upon the dynamics of the non-

ablation period.  Fig. 4b shows there was no significant relationship between the ratios of 

ablation NEE/full-season NEE and ablation period length/full-season length; therefore, seasons 

with a relatively high ratio of ablation period NEE/full-season NEE can occur during years in 

which the ablation period length constitutes either a high or a low proportion of the full-season 

length. Finally, we note that we did not find a significant relationship between date of peak SWE 

and full-season NEE (R2=0.06, P=0.39, supplemental Fig. A2 – Appendix A). 

Figure 3 | Model output results from equations (1) and (2) demonstrating the range of potential 
ablation period total NEE. Each scatter point is an ablation period from the observed record. The 
solid lines represent the mean day of peak SWE and peak SWE magnitude from the observed 
record and the dotted lines represent the projected mid-century scenario.  
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Discussion 

In the 21st century the Rocky Mountain region is projected to experience a 2.0-3.5°C 

temperature increase in mean-annual temperatures relative to the end of the 20th century 

[Baldwin et al., 2003]. By the nature of the precipitation phase dependence on temperature, 

warming has vast implications for snowpack accumulation and melting patterns. For example, 

snow melts earlier under warming scenarios [Stewart et al., 2004; Clow, 2010] due to increases 

in incident thermal radiation and sensible heat flux. Additionally, warmer air temperatures 

reduce snowpack cooling in the winter period, which, in addition to reduced SWE accumulation, 

reduces the energy required to bring the snowpack to 0⁰C and initiate snowmelt. The influence of 

warming on ablation timing can be exacerbated by the effects of decreased snowpack albedo 

brought about by snowpack dust loading [Painter et al., 2012].  

Day of peak SWE (calendar year)
80 100 120 140

Ra
tio

 o
f a

bl
at

io
n 

NE
E 

to
 fu

ll s
ea

so
n 

NE
E

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
(a)

Ratio of length of ablation to length of season (days/days)
0.05 0.1 0.15 0.2 0.25 0.3

Ra
tio

 o
f a

bl
at

io
n 

NE
E 

to
 fu

ll s
ea

so
n 

NE
E

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
(b)

Figure 4 | (a) Relationship between the date of peak SWE (horizontal axis) and the ratio of 
ablation period NEE to full-season NEE (vertical axis) (R2=0.42, P<0.01). (b) Relationship 
between the ratio of the length of the ablation season to length of the full season (horizontal axis) 
and the ratio of ablation period NEE to full-season NEE (vertical axis). 
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Our results indicate that the timing of snowmelt determines the alignment of the ablation period 

with the seasonal temperature cycle, whereby early melt occurs during colder periods of the 

seasonal temperature cycle. The magnitudes of ablation period daily NEE rates were shown to 

decrease under colder temperature conditions. Thus, as ablation shifts earlier under climate 

warming and aligns with the colder periods of the seasonal temperature cycle, ablation period 

NEE trends to decrease. This concept presents a notable paradox: as global temperatures slowly 

rise, mid-latitude subalpine forests are likely to experience colder temperatures during the 

ablation season as a result of the shift in snowmelt timing with respect to the seasonal air 

temperature cycle. Therefore, warming temperatures will likely lead to less CO2 uptake during 

the annual ablation period. Additionally, it is predicted that future warming will cause a larger 

fraction of winter precipitation to fall as rain, rather than snow [Scott-Denton et al., 2013]. This 

phenomenon is a contributing factor in decreasing SWE magnitude. Declines in peak SWE will 

further contribute to a decreasing trend in ablation period carbon uptake.  

It is perhaps surprising that we did not observe a significant relationship between daily 

NEE and PPFD. Importantly, the results of this study demonstrate that ablation period air 

temperature has a much stronger seasonal-phenological influence on ablation period daily NEE 

compared with PPFD. Additionally, we note that this ablation period temperature influence acts 

primarily on the process of forest carbon uptake, as we observed a substantially greater range in 

daytime NEE (when photosynthesis is actively occurring) opposed to nighttime NEE when 

respiration is the dominant process. Regarding the greater influence of SWE compared with air 

temperature in predicting total ablation period NEE, we suggest that this may be a result of 

varying ablation period lengths and/or a limitation of the 15-year length of the dataset. We find it 
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imperative to emphasize that, as shown in Fig. 2b, air temperature strongly influences daily NEE 

during the ablation period, which contributes a deeper understanding of forest phenological 

processes during the ablation period. In predicting total ablation period NEE, temperature and 

SWE magnitude are both important and allow us to generate future ablation period NEE 

scenarios, thus contributing to our understanding of carbon uptake trends under a warming 

scenario in seasonally snow-covered environments.   

Our analysis used gap-filled data to develop the best estimate of cumulative NEE during 

the ablation period. The specific gap-filling technique was based on a model that uses net 

radiation, temperature and wind speed to produce half-hourly NEE values. The	median	

percentage	of	model	gap-filled	data	per	ablation	period	was	8.13%.	There	were	three	years	

that	had	gap-filled	percentages	greater	than	20%	(2003–21%;	2006–35%;	2009–35%).	If	

we	remove	these	three	high	gap	fraction	years	from	our	analysis,	the	relationships	were	

rather	unaffected,	implying	that	these	higher	percentage	gap-filled	years	were	not	having	

undue	influence	on	the	results.	The	coefficient	of	determination	of	the	date	of	peak	SWE	vs.	

ablation-period	mean	air	temperature	relationship	decreased	only	slightly	from	R2=0.72	

for	all	years	to	R2=0.70	when	excluding	the	three	high	gap	fraction	years.	Additionally,	the	

coefficient	of	determination	of	the	ablation-period	mean	air	temperature	vs.	daily	NEE	

decreased	only	slightly	from	R2=0.87	for	all	years	to	R2=0.86	when	excluding	the	three	high	

gap	fraction	years.	 

In developing a complete understanding of the annual carbon budget it is important to 

also consider the NEE trends during the times preceding and following the ablation period. It has 

been demonstrated that shallower winter snowpacks result in colder soil temperatures and thus 

less soil respiration during the snow cover period (accumulation+ablation) [Monson et al., 2006]. 
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This reduction in wintertime respiration (less carbon release) acts in opposition to the potential 

reduction in ablation period carbon uptake proposed in this study. The fact that ablation-period 

NEE, which represents the sum of opposing photosynthesis and respiration CO2 fluxes, decreases 

in seasons with earlier and colder snowmelt, is consistent with the conclusion that lower 

temperatures during snowmelt inhibits photosynthesis to a greater degree than respiration. 

While we have a firm understanding as to how the NEE trends will progress during the 

periods of snow accumulation and snowmelt under changing snowpack dynamics, it is less clear 

as to how the respiration-uptake balance during the snow-free period will respond as future 

trends in summer precipitation and soil water availability are uncertain. The reported lack of 

correlation between the date of peak SWE and full-season NEE indicates that there is a 

decoupling in NEE processes between the ablation period and snow-free period. Thus, future 

work should focus on analyzing the factors that control NEE processes during the non-ablation 

period of the growing season. That said, isotopic signatures of xylem water suggest that 

snowmelt, as opposed to summer rainfall, is the primary driver of forest water availability [Hu et 

al., 2010]. Hence, the ablation-period NEE climate sensitivities reported here have important 

implications for developing robust predictions of future terrestrial carbon cycling in seasonally 

snow-covered forests.  

 

Conclusion 

Using 15 years of SWE and eddy-covariance CO2 measurements in Colorado we showed 

that temperature is a strong phenological control on ablation period daily NEE. Early ablation 

periods shifted melt to colder periods of the seasonal air temperature cycle, which resulted in 

lower magnitude daily NEE because of the strong phenological temperature influence on 
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ablation period NEE.  These results represent an important paradox whereby climate warming 

shifts the timing of snowmelt to colder periods of the seasonal temperature cycle, which acts to 

decrease NEE. Projecting forward our multilinear-regression model to predict future ablation 

period NEE scenarios, a 45% reduction in mid-century ablation-period NEE is estimated. In 

building our understanding of NEE processes during the growing season as a whole, it is 

important that we first develop a firm grasp on NEE processes during the two distinct periods 

that together compose the growing season (snow ablation period+snow free period). This study 

provides evidence that snowpack dynamics are a strong control on forest carbon uptake during 

the snow ablation period. Future efforts should be directed toward an improved understanding of 

NEE processes during the snow-free period of the growing season, with a focus on how future 

precipitation and temperature scenarios will affect the balance between photosynthetic carbon 

uptake and ecosystem respiration. 
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Chapter II: Global Variation of the Rain Snow Temperature 
Threshold  
 
Introduction 

Precipitation phase partitioning determines both the timing and quantity of streamflow, 

with a shift from snow toward rain leading toward a decrease in streamflow volume and earlier 

streamflow timing [Barnett et al., 2005; Berghuijs et al., 2014]. This phase-streamflow 

relationship has important implications for water resources management as more than one-sixth 

of the global population is dependent on glaciers and seasonal snow packs as a water supply 

[Barnett et al., 2005]. Recent trends in the western US have demonstrated that winter climate 

warming has contributed toward decreased SWE accumulation [Mote, 2003, 2006; Knowles et 

al., 2006], which has subsequently resulted in earlier melt with slower snowmelt rates [Trujillo 

and Molotch, 2014] and less annual streamflow [Barnhart et al., 2016]. As we expect this trend 

to continue, with a still greater proportion of future precipitation predicted to fall as rain, rather 

than snow [Scott-Denton et al., 2013], it becomes increasingly important to improve phase-

partitioning schemes so that we can continually improve the accuracy of hydrologic forecasts 

under progressively stressful water resources conditions.  

Auer [1974] demonstrated that there is a near-surface air temperature-precipitation phase 

relationship and that snow can occur at temperatures much greater than 0°C.  Feiccabrino and 

Lundberg [2008], Fassnacht et al. [2013] and Kienzle [2008] have subsequently developed 

additional, region specific, phase partitioning schemes based only on near-surface air 

temperature. Phase-partitioning methods that are based on simple empirical relationships with 

near-surface air temperature, however, ignore additional physically relevant variables (i.e. 

relative humidity, surface pressure) that could produce a phase distinction between two 
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precipitation events that occur at the same air temperature.  Most current precipitation-phase 

partitioning methods represent a large source of uncertainty for hydrologic models that can be 

improved with the inclusion of additional physical variables [Harder and Pomeroy, 2014].  

In this study we used a 29-year global observational dataset to explore the influence of 

surface air temperature, relative humidity and surface pressure on precipitation phase. These 

three variables are of particular importance with regards to precipitation phase due to their 

influence on the energy balance of a hydrometeor. From an energy balance perspective, 

precipitation that falls through a dry ambient atmosphere (low relative humidity) loses heat 

through evaporative cooling as it is falling. Therefore, if a snow crystal forms in the cold 

(T<0°C) upper atmosphere and falls through a warm (T>0°C) lower atmosphere, the snow 

crystal is less likely to be melted by the atmospheric sensible heat input if the relative humidity is 

low and the crystal experiences evaporative cooling. As the relative humidity approaches 100%, 

the crystal experiences less evaporative cooling and is more likely to fall as rain in the warm 

ambient atmosphere. Regarding pressure, hydrometeors that fall through areas of lower surface 

pressure experience less drag force and thus theoretically can fall faster, spending less time in the 

warm ambient atmosphere, than if falling through areas of higher surface pressure. In this study 

we explore the global influence of air temperature, relative humidity and surface pressure in 

order to further develop our understanding of precipitation phase patterns in varying land surface 

conditions. Froidurot et al. [2014] and Ding et al. [2014] have conducted studies which evaluate 

the precipitation phase influence of relative humidity and elevation (proxy for surface pressure); 

however, these studies are region specific and thus limited in both the spatial extent and quantity 

of data. Our study provides the most extensive empirical evaluation to date of the influence of air 

temperature, relative humidity and surface pressure on precipitation phase.  
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We note that this study builds upon the work of Dai [2008]. Dai used the same 29-year 

observational dataset to develop conditional snow frequency curves for both the land and the 

ocean. We extend Dai’s study by further exploring various physical variables that may influence 

conditional snow frequency curves throughout the land surface, specifically addressing how low 

relative humidity and/or reduced surface pressure may enable snow to fall at greater frequencies 

at higher surface air temperatures relative to precipitation events falling at high relative humidity 

and/or high surface pressure.  

 

Data and Methods 

a) Dataset and Station Data Analysis  

We used the NCEP ADP Operational Global Surface Observations dataset (DS464.0) that 

is hosted by the National Center for Atmospheric Research 

(http://rda.ucar.edu/datasets/ds464.0/). This dataset includes 6 and 3-hourly synoptic weather 

reports that include air temperature (Ts), dew point temperature (Td), surface pressure (Ps) and 

precipitation phase (measurements collected at ~1.5-2.0 m above ground). Observational station 

data records were sourced from both land and ocean stations. In this study we used data 

exclusively from land stations, however, some stations are in regions where precipitation falls 

exclusively as rain and thus by default were not included in this study. Fig. 1 displays the 

regional distribution of the stations that contributed data to our study (12,276 stations). Dai 

[2008] used this same dataset for his study of 50% snow frequency surface temperatures over 

land and ocean. We used the same precipitation phase distinctions described in detail in Dai 

[2008] to determine whether a precipitation event fell as rain, snow or sleet. Ambient relative 

humidity (RH) was calculated per precipitation event according to the same methods used by Dai 
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[2006]. For quality control purposes, we removed precipitation events from the dataset that had a 

calculated relative humidity of less than 10% or greater than 100%.  

 

 

We focused our station data analysis on precipitation events that fell between -0.5 °C and 

5.5 °C, typically the range in which precipitation events fall as either snow, rain, or sleet (below  

-0.5 °C the majority of events occur as snow and above 5.5 °C the majority of events occur as 

rain). We binned all events into 1-degree temperature bins (-0.5-0.5 °C, 0.5-1.5 °C, 1.5-2.5°C, 

2.5-3.5 °C, 3.5-4.5 °C, 4.5-5.5 °C) for the phase frequency analysis, which included a separate 

analysis of six relative humidity classes (40-50%, 50-60%, 60-70%, 70-80%, 80-90%, 90-100%) 
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Figure 1 | Global distribution of stations from the DS464.0 dataset that contributed data to our 
study (12,276 stations). The median number of observations per station was 460. The maximum 
number of observations contributed by a single station was 28,882 and the minimum number of 
observations contributed by a single station was 1. The color bins increase by increments of 500 
observations until the final bin, which increments from 3,500 to 30,000 observations.  
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and four pressure classes (60-70 kPa, 70-80 kPa, 80-90 kPa, 90-105 kPa). After filtering the 

dataset for the station data analysis, there were 12,832,163 precipitation observations that 

occurred within the stated temperature range, humidity range and pressure range. Table 1 and 

Table 2 display the total number of observations per relative humidity class and per pressure 

class, respectively. For each precipitation observation, we used the recorded Ts, Td and Ps to 

calculate the ambient RH during the event observation interval. We note that many stations did 

not record Ps but do maintain records of Ts, Td and precipitation phase. When this was the case, 

to calculate RH for the observation we used the 1978-2007 average wintertime (December-

January-February) Ps from the MERRA reanalysis dataset for the grid cell in which the station 

observation was located. For the stations that do record Ps, we find that the MERRA reanalysis 

Ps data closely matches the station Ps observations (mean percent difference = 0.11%).  

 

 Relative Humidity Class 
40-50% 50-60% 60-70% 70-80% 80-90% 90-100% 

Total 
Observations 38,786 148,796 406,094 863,244 3,163,547 8,211,696 

 

 
 

 Pressure Class 
60-70 kPa 70-80 kPa 80-90 kPa 90-105 kPa 

Total 
Observations 52,940 168,236 892,116 11,718,871 

 

 
 

 

Table 1 | Total number of precipitation observations between -0.5 °C and 5.5 °C	per	10%	
relative	humidity	class 
 

Table 2 | Total number of precipitation observations between -0.5 °C and 5.5 °C	per	pressure	
class 
 



	23	

b) Model  

Similar to Froidurot et al. [2014], we performed an empirical binary logistic regression 

model analysis using Ts, RH and Ps as predictor variables for precipitation phase. Our model 

development methods similarly compared to Froidurot et al. [2014] in the following ways: 1) 

Both study model sets predicted the probability of rain; 2) Both study model sets use data in the 

temperature range of greater than -3 °C to less than 5 °C (note that for the model analysis we 

alter the temperature range from our station data analysis); 3) Sleet data is removed from both 

study datasets in the model analysis. The primary reason for removing sleet data from the model 

analysis is the limitation by which the dataset does not report the proportion of solid and liquid 

precipitation for mixed events. The minimal impact of removing sleet data from the model 

analysis is detailed in Froidurot et al. [2014]; and 4) for both study model sets, if the model 

predicted that the probability of rain was greater than 50%, the event was deemed to be a rain 

event. The main difference between our set of models and the set produced in the Froidurot et al. 

[2014] study was the size and the spatial extent of the datasets. The Froidurot et al. dataset had 

68,434 data points that were exclusively from Switzerland. The NCEP DS464.0 dataset used for 

the model analysis in this study had 14,900,606 observations ranging throughout the globe 

(primarily in the northern hemisphere), approximately 218 times more observations than the 

Froidurot et al. dataset. We note that the temperature range we analyzed in the models is greater 

than the temperature range explored in the station data analysis and thus resulted in more data 

points used in the model analysis compared with the station data analysis. Note that we included 

sleet data in our station data analysis, but removed it from the modeling analysis per the reasons 

set forth by Froidurot et al. [2014]. The median elevation of the stations contributing 

observations to the NCEP DS464.0 dataset was 157 m.   



	24	

For comparison of the impact of the three predictor variables, we developed three 

different empirical binary logistic regression models:  

Temperature only model (Ts):  

 

1 										𝑝 𝑟𝑎𝑖𝑛 = 	
1

1 + 𝑒 B	C	D∗EF  

 

Temperature and relative humidity model (Ts-RH): 

 

2 									𝑝 𝑟𝑎𝑖𝑛 = 	
1

1 + 𝑒 B	C	D∗EF	C	G∗HI  

 

Temperature, relative humidity and pressure model (Ts-RH-Ps):  

 

3 										𝑝 𝑟𝑎𝑖𝑛 = 	
1

1 + 𝑒 B	C	D∗EF	C	G∗HI	C	K∗LF  

 

where α, β, γ, λ are model coefficients. We utilized an empirical modeling scheme, as 

opposed to an analytical scheme, due to the spatial and temporal variability, scarcity, and errors 

inherent in the dataset, as well as a lack of physical information regarding the conditions in the 

atmospheric column above ~1.5-2 m.  To obtain the model coefficients, we ran 250 training 

simulations with each simulation using 5000 randomly selected global observations to develop 

simulation coefficients. For each of the three models, we took the mean of the 250 sets of 

training coefficients to obtain the final model coefficients. To test the three resulting models, we 
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removed the training observations from the dataset and split the remaining validation dataset into 

10% relative humidity classes (40-50%, 50-60%, 60-70%, 70-80%, 80-90%, 90-100%) and 

tested the success rate of each model in predicting global precipitation events within each 

relative humidity class. This allowed us to compare how each model performed at predicting 

events in varying relative humidity classes.  

 

Results 

a) Station Data Relative Humidity 

The six panels of fig. 1 display the precipitation phase frequencies at the given air 

temperatures for each of the six relative humidity classes. Each panel contains every 

precipitation event in the 29-year record that fell within the 10% relative humidity bin reported at 

the top of the panel. We observed that precipitation events that fell at a low relative humidity are 

more likely to fall as snow at higher temperatures. In the 40-50% relative humidity bin, for 

example, the snow frequency at 5°C was 57.4%.  In contrast, in the 90-100% relative humidity 

bin, the snow frequency dropped close to 0% at 2°C. Fig. 2 isolates the snow frequency curves 

per relative humidity bin onto the same plot. We observed that at 0°C all snow frequency values 

are greater than 75%. As the temperature increased, however, the curves undergo a stark 

separation with the snow frequency of the higher relative humidity curves dropping quickly 

toward zero, whereas the lower relative humidity curves maintain greater snow frequency values 

at higher temperatures. We note that the total number of observations was substantially less for 

the low RH bins compared with the high RH bins, with the significant majority of observations 

having occurred in the 90-100% RH bin. 
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Figure 2 | Precipitation frequency plots for varying ranges of relative humidity. Each panel 
contains all precipitation events that fell within the labeled relative humidity bin at the plotted 
temperatures. Contained within these six panels are 12,832,163	precipitation observations. 
Temperature observations were collected at ~1.5-2m above ground.  
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b) Station Data Pressure 

The four panels of fig. 3 display the precipitation phase frequencies at the given air 

temperatures for each of the four pressure classes. Similar to the layout of fig. 1, each panel 

contains every precipitation event in the 29-year record that fell within the pressure bin reported 

at the top of the panel. At the higher temperatures we observed higher snow frequencies in the 

lower pressure bins. However, the range of snow frequency values at the higher temperatures 

was not as great compared with the relative humidity binned snow frequency range at the higher 

temperatures. Fig. 4 isolates the snow frequency curves per pressure bin onto the same plot. At 

the higher temperatures we observed the highest snow frequency values at lower pressures. 

However, as mentioned, comparisons of fig. 3 and fig. 5 demonstrates that the range in snow 
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Figure 3 | Observational snow frequency percentages per relative humidity class. At 0°C, the 
snow frequencies rank as follows, with the corresponding humidity range in parenthesis: 90.7% 
(60-70%), 90.6% (50-60%), 89.9% (70-80%), 87.8% (80-90%), 86.5% (40-50%), 78.4% (90-
100%).  
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frequency values between Ps bins was not as great at the higher temperatures when compared 

with the RH bins. Again, we note that table 2 demonstrates that the number of observations was 

substantially less for the low Ps bins compared with the high Ps bins, with the significant 

majority of observations having occurred in the 90-105 kPa bin.  

 

 

 

 

Figure 4 | Precipitation frequency plots for varying ranges of surface pressure. Each panel 
contains all precipitation events that fell within the labeled surface pressure bin at the plotted 
temperatures. Contained within these four panels are 12,832,163	precipitation observations. 
Temperature observations were collected at ~1.5-2m above ground. 
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c) Model Analysis 

Table 3 presents the coefficients calibrated for each of the three models (Ts, Ts-RH, Ts-

RH-Ps). Table 4 displays the success rate of each model in predicting the precipitation phase of 

the validation data within each RH bin. We observed that the Ts-RH and Ts-RH-Ps models 

produced similar success rates for each RH bin. The Ts-RH and Ts-RH-Ps models were more 

successful than the Ts model for each RH bin; however, the difference in success rates between 

these models decreased with increases in RH. For example, the Ts-RH model was 26.8% more 

successful than the Ts model at the 40-50% RH class and only 1.4% greater at the 90-100% RH 

class. Overall, the success rates for each model tended to increase with increases in the RH bin. 

All models had maximum success rates between 88-89%.  
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Figure 5 | Observational snow frequency percentages per surface pressure class. At 0°C, the 
snow frequencies rank as follows, with the corresponding pressure range in parenthesis: 89.7% 
(70-80), 85.3% (60-70 kPa), 85.1% (80-90 kPa), 80.6% (90-100 kPa).  
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Model α β (Ts) γ (RH) λ (Ps) 
Ts (eqn. 1) -1.54 (0.06) 1.24 (0.04) - - 
Ts-RH (eqn. 2) -10.04 (0.68) 1.41 (0.05) 0.09 (0.007) - 
Ts-RH-Ps (eqn. 3) -12.80 (1.07) 1.41 (0.05) 0.09(0.007) 0.03 (0.008) 
 

 

 Relative Humidity Class 
 40-50% 50-60% 60-70% 70-80% 80-90% 90-100% 

Total test 
observations 

 
40,871 161,513 437,011 1,070,000 3,291,606 8,682,418 

Ts Model 
Success (%) 

 
51.5 60.1 72.3 83.8 88.0 86.7 

Ts-RH 
Model 

Success (%) 
78.3 80.5 83.5 88.7 88.6 88.1 

Ts-RH-Ps 
Model 

Success (%) 
77.6 80.5 83.6 88.7 88.7 88.1 

 

 
 
Discussion 

 As warming winter temperatures lead to decreased SWE accumulation [Mote, 2003, 

2006; Knowles et al., 2006] and subsequently stressed seasonal water supplies, it has become 

increasingly important to develop improved global modeling techniques to better understand and 

predict precipitation phase. Our study took a combined approach of 1) observationally analyzing 

a global hydrometeorological dataset to better understand how various physical variables allow 

precipitation to preferentially fall as snow at higher temperatures (station data analysis), and 2) 

Table 3 | Coefficients for the Ts, Ts-RH, and Ts-RH-Ps models with the coefficient standard 
deviations in parenthesis. Coefficients align with the binary logistic regression equations 
presented in the methods (eqns. (1), (2) and (3)), which predict the probability of rain as 
functions of varying combinations of Ts (°C), RH (%) and Ps (kPa) 
 

Table 4 | Model success rates per relative humidity class 
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using the results of the station data analysis to develop the most extensive global phase 

prediction model to date (model analysis).  

Our station data analysis indicated that precipitation events were much more likely to fall 

as snow at higher Ts when the RH was lower. The lowest RH bin (40-50%) had a snow 

frequency of over 50% at 5°C, and we observed a successive drop-off of snow frequency values 

with increases in RH. The highest RH bins had effectively 0% of events occur as snow at 5°C. 

Fig. 3 displays the large range in snow frequency values at high temperatures for the various RH 

bins. First principles suggest that high snow frequencies at high temperatures for the low RH 

bins were a result of evaporative cooling that occurs as snow crystals fall through a low RH 

ambient atmosphere. This cooling effect allows the crystals to remain frozen even though the 

ambient temperature may be greater than 0°C. We note that our RH calculations represent the 

conditions at ~1.5-2m above ground.  

Fig. 5 demonstrates that the range in snow frequency values for the Ps bins was not 

nearly as large as it was for the RH bins, indicating that RH has a greater influence on 

precipitation phase compared with pressure. However, although the range in snow frequency 

values is low, the lower Ps bins did demonstrate the highest snow frequency values at the higher 

temperatures. First principles indicate that the greater snow frequency values at higher 

temperatures for the low Ps bins was influenced by snow crystals being able to fall at faster 

speeds through lower pressure environments, thus reducing the duration of exposure to warm 

ambient atmospheric conditions.  

The binary logistic regression model results demonstrate that the Ts-RH and Ts-RH-Ps 

models performed effectively equivalently, and that both of these models uniformly performed 

better than the simple Ts model. The equivalent performance of the Ts-RH and Ts-RH-Ps 
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models indicates that adding Ps to the model does not improve model performance. Table 3 

demonstrates that the greatest utility from adding RH into the model occurred in predicting 

precipitation phase in the lower RH bins. For example, the difference in success rates for 

predicting precipitation phase in the 40-50% RH bin between the Ts and Ts-RH models was 

26.8%, whereas the difference in success rates for the 90-100% bin was 1.4%, therefore 

indicating that the utility of including RH in the model is greatest for predicting events that occur 

at low ambient RH. Therefore, while our results demonstrate that RH should be included in 

precipitation phase predictive models whenever possible, we might expect RH to more 

significantly contribute to models developed for climatically dry regions.  

The binary logistic regression models proposed in this study can be applied to improve 

snowpack development within hydrologic models. Due to the spatial extent of the data and 

demonstrated high success of the models, the models can be applied in regions where other phase 

precipitation models do not currently exist.  

 

Conclusion  

Using 29 years of global precipitation phase data, we have presented the most spatially 

extensive binary logistic regression phase prediction model. While previous studies have 

produced regional binary logistic regression models, our models have been tested with high 

success rates on a global scale and thus can be used in regions that do not presently have existing 

models. Our model analysis demonstrated that a Ts-RH model had universally higher predictions 

success rates than the simple Ts model, with the most significant differences having occurred for 

predicting events that occurred at lower RH (Ts-RH model was 26.1% more successful than the 

simple Ts model in predicting events in the lowest relative humidity class). Thus, when RH data 
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is available, the Ts-RH model should be utilized for increased phase prediction success. The Ts-

RH-Ps model generally performed slightly better than the Ts-RH model, however, the difference 

in success rates between the two models was often less than 1%. This result aligns with our 

station data analysis that showed a large range in snow frequencies at higher temperatures for 

different RH class events and only a small range in snow frequencies at higher temperatures for 

different Ps class events. Future efforts should be directed toward an improved understanding of 

snow crystal energy balance dynamics throughout the entire atmospheric profile, with a focus on 

the effects of RH and temperature throughout the profile. Additionally, the effectiveness of the 

models proposed in this study should be tested in areas where more high elevation data are 

available.   
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Appendix A  
 

 

 

Figure A1 | Relationship between the mean ablation period daytime PPFD (horizontal axis) and 
the ablation period daily NEE (vertical axis) (R2=0.11, P=0.23). 
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Figure A2 | Relationship between day of peak SWE (horizontal axis) and full-season NEE 
(vertical axis) (R2=0.06, P=0.39). 
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Year 
Peak 
SWE 
(m) 

Ablation 
Period 
Start 
Date 

(DOY) 

Ablation 
Period 

End Date 
(DOY) 

Ablation 
Period 
NEE 

(gC/m2) 

Ablation 
Period Mean 

Air 
Temperature 

(°C) 

Ablation 
Period Mean 

Daytime 
PPFD 

(µmol/m2/sec) 

Ablation 
Period Mean 
Daytime Net 

Radiation 
(W/m2) 

Last Day 
of Non-

Ablation 
Period 
(DOY) 

1999 0.3734 124 156 -56.21 3.70 940.7 387.1 304 

2000 0.3175 96 138 -41.04 3.79 885.0 282.5 304 

2001 0.2438 126 144 -48.62 5.98 902.8 320.9 309 

2002 0.1753 90 121 3.36 1.91 872.6 342.3 295 

2003 0.4013 98 153 -55.82 3.80 853.8 328.7 303 

2004 0.2870 123 144 -54.96 6.57 850.1 326.8 298 

2005 0.3251 129 148 -42.18 6.61 1006 364.8 305 

2006 0.3150 98 137 -27.56 3.28 927.8 343.9 288 

2007 0.4547 117 154 -92.02 4.96 818.3 311.7 307 

2008 0.3785 109 154 -42.52 2.63 867.2 327.9 309 

2009 0.4064 110 145 -48.16 4.21 882.7 343.5 293 

2010 0.3023 136 153 -40.84 6.61 986.4 384.0 308 

2011 0.4293 144 164 -72.29 7.92 961.2 374.8 301 

2012 0.2769 73 127 -9.22 3.11 894.7 337.8 296 

2013 0.4242 131 157 -81.57 6.71 927.6 361.9 289 

Table A1 | 15 years of climate and snow ablation period data for the co-located Niwot Ridge 
AmeriFlux and SnoTel sites 

 


