

Global Inventory of Natural Gas Geochemical Measurements for Improved Atmospheric Methane Modeling

Introduction

Methane (CH_4) is a potent greenhouse gas (GHG) which accounts for ~20% of the GHG radiative forcing over the industrial era (Dlugokencky et al., 2011). The rise in atmospheric CH_4 has been non-linear, with a period of relative stability from 1997-2007, followed by a renewed increase since 2008 (Nisbet et al., 2014; Fig. 1). The reasons for these variations are not completely understood, partly because specific contributions from natural and anthropogenic sources remain unclear (Fig. 2).

Figure 1: Global time series plots of CH₄ and δ^{13} C of CH₄ from 1999-2014. The recent rise in CH₄ is concurrent with a decrease in δ^{13} C of CH₄.

References

Dlugokencky EJ et al., (2011). Phil. Trans. Royal Soc. A369 (1943), 2058–2072. Nisbet *et al.,* (2014). Science 343: 493-495. Mikaloff-Fletcher et al., (2004). Global Biogeochemical Cycles. 18(4): GB4004. Bousquet *et al.*, (2006). Nature 443(7710): 439-443. Whiticar (1999). Chemical Geology 161: 291-294 Schwietzke *et al.,* (2014). Environmental Science & Technology. 48(14): 7714-7722. We thank Martin Schoell, Guiseppe Etiope and Edward Duglokenchy for assistance with data.

Victoria Arling¹, Stefan Schwietzke¹, John Miller¹, Sylvia Michel², Andrea Sack², Bruce Vaughn², Owen Sherwood² ¹NOAA Earth System Research Laboratory Global Monitoring Division, Boulder Colorado, ²INSTAAR University of Colorado, Boulder, Colorado

2012 2014

Why δ^{13} C end-members?

Measurements of $\delta^{13}C$ can be used to constrain global methane sources (Fig. 1). However, the global-weighted end-member values are not well characterized. By knowing where the end-member values fall horizontally on the scale (Fig. 3), we can estimate how much each of the sources contribute to overall methane concentrations in the atmosphere.

Figure 3: Mass balance of three CH₄ source categories. "Microbial" includes wetlands, ruminants, rice, landfills, and termites.

Database

We compiled a global inventory of natural gas molecular and istopic measurements from the peer-reviewed literature and government reports. The inventory contains data from 45 countries, 179 basins, 597 geological formations, and 10790 unique samples. On a countrylevel basis, the data represent 79% of world natural gas production.

All Samples

Figure 4: Global sample count of CH_4 - $\delta^{13}C$ for all types of natural gas and coal production.

Figure 5: Generic classification of natural gases in the database, according to Whiticar (1999).

Jil/yas,	Diamaga
coal	Biomass
	burning
	/

Results

emissions estimates (Fig. 7)

Figure 6: Visual representations of three analyzed parameters ($\delta^{13}C$, $\delta^{2}H$, and $C_2:C_1$) and three types of production (conventional, shale, coal) in the global database. Statistical weighting of the geochemical parameters by basin-level production is still in progress.

Figure 7: Time series plot of modeled CH_4 emissions from different sources. The recent increase in global CH₄ can be attributed primarily to microbial emissions. Model adapted from Schwietzke et al. (2014) assuming -45 ‰ as the vaue for integrated fossil fuel methane emissions.

Data for different types of natural gas production (conventional, coal and shale gas) are presented in Figs. 5 and 6. Note how CH_4 - $\delta^{13}C$ values are skewed to more negative values, because of the importance of isotopically-depleted microbial gas. By weighting the data by continent-level gas production (BP, 2015) integrated over the years 2000-2014, we obtain a global, production-weighted average of -43.9 \pm 0.3 ‰ (bootstrapped 95% confidence intervals) for the CH₄- δ^{13} C of conventional gas. This value is considerably lower than the value (-40 ‰) typically used in global, top-down models of the global CH_{4} budget. This could have a major consequence in methane