Choosing a Statistical Test Depending on Type of Variable and Study Design In the following table, the "input variable" is the independent variable or factor; "output variable" is the dependent or response variable. Cells outlined in red are most common cases. χ^2 =Chi-square test. A statistics primer: https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one Table & notes from BMJ: "13. Study design and choosing a statistical test" <a href="https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design-and-choosing-square-one/13-study-design | | | Outcome variable (= Dependent variable) | | | | | | | |------------------------|------------------------------------|---|-----------------------------------|---|--------------------------|---|--|--| | | | Nominal
(2
Categories:
Presence/
Absence) | Categorical
(>2
Categories) | Ordinal
(=Ranked) | Quantitative
Discrete | Quantitative
Non-Normal
(Continuous | Quantitative
Normal
variable) | | | Input
Variable | Nominal | X ² or
Fisher's | x² | χ ² trend or
Mann-Whitney | Mann-Whitney | Mann-Whitney
or log-rank (a) | | | | lependent
variable) | Categorical
(>2
categories) | χ² | χ² | Kruskal-Wallis
(b) | Kruskal-Wallis
(b) | Kruskal-Wallis
(b) | Analysis of
variance (c) | | | | Ordinal
(Ordered
categories) | X ² -trend
or Mann-
Whitney | (e) | Spearman
rank | Spearman
rank | Spearman
rank | Spearman
rank or
linear
regression
(d) | | | | Quantitative
Discrete | Logistic
regression | (e) | (e) | Spearman
rank | Spearman
rank | Spearman
rank or
linear
regression
(d) | | | | | Logistic
regression | (e) | (e) | (e) | Plot data and
Pearson or
Spearman
rank | Plot data
and
Pearson or
Spearman
rank and
linear
regression | Plot data to identife method to transfordata to Normal, the use linear regression otherwise use rank | | | Quantitative
Normal | Logistic
regression | (e) | (e) | (e) | Linear
regression (d) | Pearson
and linear
regression | method | - (a) If data are censored [not a usual case, see https://en.wikipedia.org/wiki/Censoring (statistics)] - (b) The Kruskal-Wallis test is used for comparing ordinal or non-Normal variables for more than two groups, and is a generalisation of the Mann-Whitney U test. The technique is beyond the scope of this book, but is described in more advanced books and is available in common software (Epi-Info, Minitab, SPSS). - (c) Analysis of variance (ANOVA) is a general technique, and one version (one-way analysis of variance) is used to compare Normally-distributed variables for more than two groups, and is the parametric equivalent of the Kruskal-Wallis test. - (d) If the outcome variable is the dependent variable, then provided the residuals are plausibly Normal, then the distribution of the independent variable is not important. - (e) There are a number of more advanced techniques, such as Poisson regression, for dealing with these situations. However, they require certain assumptions and it is often easier to either dichotomise the outcome variable or treat it as continuous.